BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21402382)

  • 1. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels.
    Gagnon MA; Lafleur M
    J Colloid Interface Sci; 2011 May; 357(2):419-27. PubMed ID: 21402382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-diffusion and mutual diffusion of small molecules in high-set curdlan hydrogels studied by 31P NMR.
    Gagnon MA; Lafleur M
    J Phys Chem B; 2009 Jul; 113(27):9084-91. PubMed ID: 19522479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between nuclear magnetic resonance profiling and the source/sink approach for characterizing drug diffusion in hydrogel matrices.
    Gagnon MA; Lafleur M
    Pharm Dev Technol; 2011; 16(6):651-6. PubMed ID: 20687774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of water distribution in xanthan-curdlan hydrogel complex using magnetic resonance imaging, nuclear magnetic resonance relaxometry, rheology, and scanning electron microscopy.
    Williams PD; Oztop MH; McCarthy MJ; McCarthy KL; Lo YM
    J Food Sci; 2011 Aug; 76(6):E472-8. PubMed ID: 22417499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM.
    Jin Y; Zhang H; Yin Y; Nishinari K
    Carbohydr Res; 2006 Jan; 341(1):90-9. PubMed ID: 16310757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process.
    Gagnon MA; Lafleur M
    Appl Spectrosc; 2007 Apr; 61(4):374-8. PubMed ID: 17456255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological investigation of a versatile salecan/curdlan gel matrix.
    Fan Z; Cheng P; Prakash S; Zhang P; Mei L; Ji S; Wang Z; Han J
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2202-2209. PubMed ID: 34780896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability.
    Mangolim CS; da Silva TT; Fenelon VC; do Nascimento A; Sato F; Matioli G
    Food Chem; 2017 Oct; 232():369-378. PubMed ID: 28490087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self- and mutual-diffusion coefficients measurements by 31P NMR 1D profiling and PFG-SE in dextran gels.
    Kwak S; Viet MT; Lafleur M
    J Magn Reson; 2003 May; 162(1):198-205. PubMed ID: 12762996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthan-Curdlan nexus for synthesizing edible food packaging films.
    Mohsin A; Zaman WQ; Guo M; Ahmed W; Khan IM; Niazi S; Rehman A; Hang H; Zhuang Y
    Int J Biol Macromol; 2020 Nov; 162():43-49. PubMed ID: 32512088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular weight effect on liquid crystalline gel formation of curdlan.
    Nobe M; Kuroda N; Dobashi T; Yamamoto T; Konno A; Nakata M
    Biomacromolecules; 2005; 6(6):3373-9. PubMed ID: 16283768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-responsive behavior and gelation of curdlan alkyl-ethers prepared by homogeneous reaction.
    Wu M; Li R; Liao Q; Wang P; Zhang H
    Carbohydr Polym; 2023 Jan; 300():120248. PubMed ID: 36372508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels.
    Jejurikar A; Lawrie G; Martin D; Grøndahl L
    Biomed Mater; 2011 Apr; 6(2):025010. PubMed ID: 21436510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and gel properties of low molecular weight curdlan by hydrolysis of curdlan with commercial α-amylase.
    Chen YF; Zhu Q; Wu SJ
    Carbohydr Polym; 2014 Nov; 113():362-4. PubMed ID: 25256495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization and properties of konjac glucomannan/curdlan blend films.
    Wu C; Peng S; Wen C; Wang X; Fan L; Deng R; Pang J
    Carbohydr Polym; 2012 Jun; 89(2):497-503. PubMed ID: 24750750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of curdlan addition and thermal sterilization on the structural and properties of rice starch gel.
    Wang J; Liu Y; Zhao M; Sun Q; Li M; Wang Y; Zhang Y; Xie F
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132593. PubMed ID: 38788865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the Textural and Gel Properties of Frankfurters by Adding Thermo-reversible or Thermo-irreversible Curdlan Gels.
    Jiang S; Cao CA; Xia XF; Liu Q; Kong BH
    J Food Sci; 2019 May; 84(5):1068-1077. PubMed ID: 30990884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels.
    Singh B; Chauhan GS; Sharma DK; Kant A; Gupta I; Chauhan N
    Int J Pharm; 2006 Nov; 325(1-2):15-25. PubMed ID: 16844329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Xanthan-Curdlan Hydrogel Complex on Freeze-Thaw Stability and Rheological Properties of Whey Protein Isolate Gel over Multiple Freeze-Thaw Cycle.
    Shiroodi SG; Rasco BA; Lo YM
    J Food Sci; 2015 Jul; 80(7):E1498-505. PubMed ID: 26012512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating structure-dependent diffusion in hydrogels using spatially resolved NMR spectroscopy.
    Wisniewska MA; Seland JG
    J Colloid Interface Sci; 2019 Jan; 533():671-677. PubMed ID: 30195115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.