These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 21402762)
1. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Beasley FC; Marolda CL; Cheung J; Buac S; Heinrichs DE Infect Immun; 2011 Jun; 79(6):2345-55. PubMed ID: 21402762 [TBL] [Abstract][Full Text] [Related]
2. TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase. Sheldon JR; Marolda CL; Heinrichs DE Mol Microbiol; 2014 May; 92(4):824-39. PubMed ID: 24666349 [TBL] [Abstract][Full Text] [Related]
3. Efflux Transporter of Siderophore Staphyloferrin A in Staphylococcus aureus Contributes to Bacterial Fitness in Abscesses and Epithelial Cells. Nakaminami H; Chen C; Truong-Bolduc QC; Kim ES; Wang Y; Hooper DC Infect Immun; 2017 Aug; 85(8):. PubMed ID: 28559406 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Cheung J; Beasley FC; Liu S; Lajoie GA; Heinrichs DE Mol Microbiol; 2009 Nov; 74(3):594-608. PubMed ID: 19775248 [TBL] [Abstract][Full Text] [Related]
5. Involvement of reductases IruO and NtrA in iron acquisition by Staphylococcus aureus. Hannauer M; Arifin AJ; Heinrichs DE Mol Microbiol; 2015 Jun; 96(6):1192-210. PubMed ID: 25777658 [TBL] [Abstract][Full Text] [Related]
6. Identification of a positively charged platform in Staphylococcus aureus HtsA that is essential for ferric staphyloferrin A transport. Cooper JD; Hannauer M; Marolda CL; Briere LA; Heinrichs DE Biochemistry; 2014 Aug; 53(31):5060-9. PubMed ID: 25050909 [TBL] [Abstract][Full Text] [Related]
7. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Beasley FC; Vinés ED; Grigg JC; Zheng Q; Liu S; Lajoie GA; Murphy ME; Heinrichs DE Mol Microbiol; 2009 May; 72(4):947-63. PubMed ID: 19400778 [TBL] [Abstract][Full Text] [Related]
8. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. Madsen JL; Johnstone TC; Nolan EM J Am Chem Soc; 2015 Jul; 137(28):9117-27. PubMed ID: 26030732 [TBL] [Abstract][Full Text] [Related]
9. Discovery of an iron-regulated citrate synthase in Staphylococcus aureus. Cheung J; Murphy ME; Heinrichs DE Chem Biol; 2012 Dec; 19(12):1568-78. PubMed ID: 23261600 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic and genotypic assessment of iron acquisition in diverse bovine-associated non-aureus staphylococcal strains. Reydams H; Toledo-Silva B; Mertens K; Piepers S; Vereecke N; Souza FN; Haesebrouck F; De Vliegher S Vet Res; 2024 Jan; 55(1):6. PubMed ID: 38217046 [TBL] [Abstract][Full Text] [Related]
11. Staphylococcus aureus siderophore-mediated iron-acquisition system plays a dominant and essential role in the utilization of transferrin-bound iron. Park RY; Sun HY; Choi MH; Bai YH; Shin SH J Microbiol; 2005 Apr; 43(2):183-90. PubMed ID: 15880095 [TBL] [Abstract][Full Text] [Related]
12. Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus. Hannauer M; Sheldon JR; Heinrichs DE FEBS Lett; 2015 Mar; 589(6):730-7. PubMed ID: 25680529 [TBL] [Abstract][Full Text] [Related]
13. Production of siderophore by coagulase-negative staphylococci and its relation to virulence. Lindsay JA; Riley TV; Mee BJ Eur J Clin Microbiol Infect Dis; 1994 Dec; 13(12):1063-6. PubMed ID: 7889970 [TBL] [Abstract][Full Text] [Related]
14. The configuration of the chiral carbon atoms in staphyloferrin A and analysis of the transport properties in Staphylococcus aureus. Drechsel H; Winkelmann G Biometals; 2005 Feb; 18(1):75-81. PubMed ID: 15865412 [TBL] [Abstract][Full Text] [Related]
15. Receptor-mediated recognition and uptake of iron from human transferrin by Staphylococcus aureus and Staphylococcus epidermidis. Modun B; Evans RW; Joannou CL; Williams P Infect Immun; 1998 Aug; 66(8):3591-6. PubMed ID: 9673237 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A. Cotton JL; Tao J; Balibar CJ Biochemistry; 2009 Feb; 48(5):1025-35. PubMed ID: 19138128 [TBL] [Abstract][Full Text] [Related]
19. Isolation and biological characterization of staphyloferrin B, a compound with siderophore activity from staphylococci. Haag H; Fiedler HP; Meiwes J; Drechsel H; Jung G; Zähner H FEMS Microbiol Lett; 1994 Jan; 115(2-3):125-30. PubMed ID: 8138126 [TBL] [Abstract][Full Text] [Related]
20. In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. Flannagan RS; Brozyna JR; Kumar B; Adolf LA; Power JJ; Heilbronner S; Heinrichs DE J Biol Chem; 2022 May; 298(5):101823. PubMed ID: 35283192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]