These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21403236)

  • 1. Ballistic transport through graphene nanostructures of velocity and potential barriers.
    Krstajić PM; Vasilopoulos P
    J Phys Condens Matter; 2011 Apr; 23(13):135302. PubMed ID: 21403236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines.
    Barbier M; Vasilopoulos P; Peeters FM
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5499-524. PubMed ID: 21041227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact and edge effects in graphene devices.
    Lee EJ; Balasubramanian K; Weitz RT; Burghard M; Kern K
    Nat Nanotechnol; 2008 Aug; 3(8):486-90. PubMed ID: 18685636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic properties of graphene nanostructures.
    Molitor F; Güttinger J; Stampfer C; Dröscher S; Jacobsen A; Ihn T; Ensslin K
    J Phys Condens Matter; 2011 Jun; 23(24):243201. PubMed ID: 21613728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control over band structure and tunneling in bilayer graphene induced by velocity engineering.
    Cheraghchi H; Adinehvand F
    J Phys Condens Matter; 2014 Jan; 26(1):015302. PubMed ID: 24275200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging universal conductance fluctuations in graphene.
    Borunda MF; Berezovsky J; Westervelt RM; Heller EJ
    ACS Nano; 2011 May; 5(5):3622-7. PubMed ID: 21466198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic properties of a graphene antidot in magnetic fields.
    Park PS; Kim SC; Yang SR
    J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band gap opening of graphene by doping small boron nitride domains.
    Fan X; Shen Z; Liu AQ; Kuo JL
    Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical graphene nanocones over 3D platform of carbon fabrics: a route towards fully foldable graphene based electron source.
    Maiti UN; Maiti S; Das NS; Chattopadhyay KK
    Nanoscale; 2011 Oct; 3(10):4135-41. PubMed ID: 21850356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transport properties of atomic carbon nanowires between graphene electrodes.
    Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y
    J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.
    Kotakoski J; Santos-Cottin D; Krasheninnikov AV
    ACS Nano; 2012 Jan; 6(1):671-6. PubMed ID: 22188561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport properties through graphene-based fractal and periodic magnetic barriers.
    Sun L; Fang C; Song Y; Guo Y
    J Phys Condens Matter; 2010 Nov; 22(44):445303. PubMed ID: 21403344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman study on the g mode of graphene for determination of edge orientation.
    Cong C; Yu T; Wang H
    ACS Nano; 2010 Jun; 4(6):3175-80. PubMed ID: 20446715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport through quantum wells and superlattices on topological insulator surfaces.
    Song JT; Li YX; Sun QF
    J Phys Condens Matter; 2014 May; 26(18):185007. PubMed ID: 24759077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.