These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 21403283)

  • 1. Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency.
    Tsaousidou M; Triberis GP
    J Phys Condens Matter; 2010 Sep; 22(35):355304. PubMed ID: 21403283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Coulomb interaction in thermoelectric effects of an Aharonov-Bohm interferometer.
    Liu YS; Zhang DB; Yang XF; Feng JF
    Nanotechnology; 2011 Jun; 22(22):225201. PubMed ID: 21454941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric properties of a quantum dot array connected to metallic electrodes.
    Kuo DM; Chang YC
    Nanotechnology; 2013 May; 24(17):175403. PubMed ID: 23558456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-equilibrium thermoelectric transport across normal metal-quantum dot-superconductor hybrid system within the Coulomb blockade regime.
    Verma S; Singh A
    J Phys Condens Matter; 2022 Feb; 34(15):. PubMed ID: 35045407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures.
    Girard SN; He J; Zhou X; Shoemaker D; Jaworski CM; Uher C; Dravid VP; Heremans JP; Kanatzidis MG
    J Am Chem Soc; 2011 Oct; 133(41):16588-97. PubMed ID: 21902270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of thermoelectric efficiency in a two-level molecule.
    Wierzbicki M; Swirkowicz R
    J Phys Condens Matter; 2010 May; 22(18):185302. PubMed ID: 21393681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states.
    Heremans JP; Jovovic V; Toberer ES; Saramat A; Kurosaki K; Charoenphakdee A; Yamanaka S; Snyder GJ
    Science; 2008 Jul; 321(5888):554-7. PubMed ID: 18653890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons.
    Eidelman ED; Vul' AY
    J Phys Condens Matter; 2007 Jul; 19(26):266210. PubMed ID: 21694087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium sulphene: two-dimensional confinement of electrons and phonons giving rise to improved thermoelectric performance.
    Zhang RZ; Wan CL; Wang YF; Koumoto K
    Phys Chem Chem Phys; 2012 Dec; 14(45):15641-4. PubMed ID: 23090033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large spin figure of merit in a double quantum dot coupled to noncollinear ferromagnetic electrodes.
    Zheng J; Chi F; Guo Y
    J Phys Condens Matter; 2012 Jul; 24(26):265301. PubMed ID: 22653051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-dependent thermoelectric properties of a Kondo-correlated quantum dot with Rashba spin-orbit coupling.
    Karwacki L; Trocha P; Barnaś J
    J Phys Condens Matter; 2013 Dec; 25(50):505305. PubMed ID: 24275387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designer thermal switches: the effect of the contact material on instantaneous thermoelectric transport through a strongly interacting quantum dot.
    Goker A; Gedik E
    J Phys Condens Matter; 2013 Sep; 25(36):365301. PubMed ID: 23941808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].
    Xiao JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):598-601. PubMed ID: 19455781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport properties and enhanced figure of merit of quantum dot-based spintronic thermoelectric device.
    Zubov YD; Ilinskaya OA; Krive IV; Krokhin AA
    J Phys Condens Matter; 2018 Aug; 30(31):315303. PubMed ID: 29893722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot.
    Zheng J; Chi F; Lu XD; Zhang KC
    Nanoscale Res Lett; 2012 Feb; 7(1):157. PubMed ID: 22369454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots.
    T Kuo DM; Chang YC
    Nanoscale Res Lett; 2012 May; 7(1):257. PubMed ID: 22591807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon-drag thermopower and hot-electron energy-loss rate in a Rashba spin-orbit coupled two-dimensional electron system.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Jul; 25(26):265301. PubMed ID: 23751509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum interference and structure-dependent orbital-filling effects on the thermoelectric properties of quantum dot molecules.
    Chen CC; Kuo DM; Chang YC
    Phys Chem Chem Phys; 2015 Jul; 17(29):19386-93. PubMed ID: 26144845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.
    Talbo V; Saint-Martin J; Retailleau S; Dollfus P
    Sci Rep; 2017 Nov; 7(1):14783. PubMed ID: 29093549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.