These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21403310)

  • 1. Massless Dirac fermions in a graphene superlattice: a T-matrix approach.
    Pham CH; Nguyen HC; Nguyen VL
    J Phys Condens Matter; 2010 Oct; 22(42):425501. PubMed ID: 21403310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-gap opening and quenching in graphene under periodic external potentials.
    Zhang A; Dai Z; Shi L; Feng YP; Zhang C
    J Chem Phys; 2010 Dec; 133(22):224705. PubMed ID: 21171694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New generation of massless Dirac fermions in graphene under external periodic potentials.
    Park CH; Yang L; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2008 Sep; 101(12):126804. PubMed ID: 18851401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Massless Dirac fermions in graphene under an external periodic magnetic field.
    Liu S; Nurbawono A; Guo N; Zhang C
    J Phys Condens Matter; 2013 Oct; 25(39):395302. PubMed ID: 23999085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of Klein reflection by magnetic barriers in bilayer graphene.
    Agrawal Garg N; Grover S; Ghosh S; Sharma M
    J Phys Condens Matter; 2012 May; 24(17):175003. PubMed ID: 22481035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ballistic transport through graphene nanostructures of velocity and potential barriers.
    Krstajić PM; Vasilopoulos P
    J Phys Condens Matter; 2011 Apr; 23(13):135302. PubMed ID: 21403236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene.
    Kim KS; Walter AL; Moreschini L; Seyller T; Horn K; Rotenberg E; Bostwick A
    Nat Mater; 2013 Oct; 12(10):887-92. PubMed ID: 23892785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines.
    Barbier M; Vasilopoulos P; Peeters FM
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5499-524. PubMed ID: 21041227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional gas of massless Dirac fermions in graphene.
    Novoselov KS; Geim AK; Morozov SV; Jiang D; Katsnelson MI; Grigorieva IV; Dubonos SV; Firsov AA
    Nature; 2005 Nov; 438(7065):197-200. PubMed ID: 16281030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandgap opening in graphene induced by patterned hydrogen adsorption.
    Balog R; Jørgensen B; Nilsson L; Andersen M; Rienks E; Bianchi M; Fanetti M; Laegsgaard E; Baraldi A; Lizzit S; Sljivancanin Z; Besenbacher F; Hammer B; Pedersen TG; Hofmann P; Hornekaer L
    Nat Mater; 2010 Apr; 9(4):315-9. PubMed ID: 20228819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bipolar supercurrent in graphene.
    Heersche HB; Jarillo-Herrero P; Oostinga JB; Vandersypen LM; Morpurgo AF
    Nature; 2007 Mar; 446(7131):56-9. PubMed ID: 17330038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exotic electronic properties in Thue-Morse graphene superlattices.
    Xu Y; Zou J; Jin G
    J Phys Condens Matter; 2013 Jun; 25(24):245301. PubMed ID: 23709474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of massless Dirac fermions in non-topological type edge states.
    Latyshev YI; Orlov AP; Volkov VA; Enaldiev VV; Zagorodnev IV; Vyvenko OF; Petrov YV; Monceau P
    Sci Rep; 2014 Dec; 4():7578. PubMed ID: 25524881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunneling of Dirac electrons through one-dimensional potentials in graphene: a T-matrix approach.
    Chau Nguyen H; Lien Nguyen V
    J Phys Condens Matter; 2009 Jan; 21(4):045305. PubMed ID: 21715801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confinement of massless Dirac fermions in the graphene matrix induced by the B/N heteroatoms.
    Yu S; Zheng W; Ao Z; Li S
    Phys Chem Chem Phys; 2015 Feb; 17(8):5586-93. PubMed ID: 25588863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transport and Goos-Hänchen shift in graphene with electric and magnetic barriers: optical analogy and band structure.
    Sharma M; Ghosh S
    J Phys Condens Matter; 2011 Feb; 23(5):055501. PubMed ID: 21406909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant, non-resonant and anomalous states of Dirac electrons in a parabolic well in the presence of magnetic fields.
    Kim SC; Lee JW; Eric Yang SR
    J Phys Condens Matter; 2012 Dec; 24(49):495302. PubMed ID: 23137993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Touching points in the energy band structure of bilayer graphene superlattices.
    Pham CH; Nguyen VL
    J Phys Condens Matter; 2014 Oct; 26(42):425502. PubMed ID: 25274067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity.
    Diez M; Dahlhaus JP; Wimmer M; Beenakker CW
    Phys Rev Lett; 2014 May; 112(19):196602. PubMed ID: 24877956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.