These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 21403719)

  • 1. Broadly tunable carrier envelope phase stable optical parametric amplifier pumped by a monolithic ytterbium fiber amplifier.
    Fernández A; Zhu L; Verhoef AJ; Sidorov-Biryukov D; Pugzlys A; Baltuska A; Liao KH; Liu ChH; Galvanauskas A; Kane S; Holzwarth R; Ilday FO
    Opt Lett; 2009 Sep; 34(18):2799-801. PubMed ID: 19756109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of an optical frequency synthesizer with zero carrier-envelope-offset frequency stabilized by the direct locking method.
    Kim EB; Lee JH; Trung LT; Lee WK; Yu DH; Ryu HY; Nam CH; Park CY
    Opt Express; 2009 Nov; 17(23):20920-6. PubMed ID: 19997329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-passive phase locking of a compact Er:fiber laser system.
    Krauss G; Fehrenbacher D; Brida D; Riek C; Sell A; Huber R; Leitenstorfer A
    Opt Lett; 2011 Feb; 36(4):540-2. PubMed ID: 21326449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The generation of dispersive waves from a photonic crystal fiber by higher-order mode excitation.
    Karasawa N; Tada K
    Opt Express; 2010 Mar; 18(5):5338-43. PubMed ID: 20389547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement.
    Pawłowska M; Ozimek F; Fita P; Radzewicz C
    Rev Sci Instrum; 2009 Aug; 80(8):083101. PubMed ID: 19725640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature feedback control for long-term carrier-envelope phase locking.
    Yun C; Chen S; Wang H; Chini M; Chang Z
    Appl Opt; 2009 Sep; 48(27):5127-30. PubMed ID: 19767929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser.
    Geernaert T; Kalli K; Koutsides C; Komodromos M; Nasilowski T; Urbanczyk W; Wojcik J; Berghmans F; Thienpont H
    Opt Lett; 2010 May; 35(10):1647-9. PubMed ID: 20479837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum-limited noise performance of a femtosecond all-fiber ytterbium laser.
    Prochnow O; Paschotta R; Benkler E; Morgner U; Neumann J; Wandt D; Kracht D
    Opt Express; 2009 Aug; 17(18):15525-33. PubMed ID: 19724550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser.
    Tang M; Minamide H; Wang Y; Notake T; Ohno S; Ito H
    Opt Express; 2011 Jan; 19(2):779-86. PubMed ID: 21263619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locking the carrier-envelope-offset frequency of an optical parametric oscillator without f-2f self-referencing.
    Ferreiro TI; Sun J; Reid DT
    Opt Lett; 2010 May; 35(10):1668-70. PubMed ID: 20479844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Few-cycle oscillator pulse train with constant carrier-envelope- phase and 65 as jitter.
    Rausch S; Binhammer T; Harth A; Schulz E; Siegel M; Morgner U
    Opt Express; 2009 Oct; 17(22):20282-90. PubMed ID: 19997254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy femtosecond photonic crystal fiber laser.
    Lecaplain C; Ortaç B; Machinet G; Boullet J; Baumgartl M; Schreiber T; Cormier E; Hideur A
    Opt Lett; 2010 Oct; 35(19):3156-8. PubMed ID: 20890318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics.
    Mücke OD; Tritschler T; Wegener M; Morgner U; Kärtner FX
    Phys Rev Lett; 2002 Sep; 89(12):127401. PubMed ID: 12225122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser.
    Wise FW; Walmsley IA; Tang CL
    Opt Lett; 1988 Feb; 13(2):129. PubMed ID: 19742003
    [No Abstract]   [Full Text] [Related]  

  • 16. Femtosecond-tunable measurement of electron thermalization in gold.
    Sun C; Vallée F; Acioli LH; Ippen EP; Fujimoto JG
    Phys Rev B Condens Matter; 1994 Nov; 50(20):15337-15348. PubMed ID: 9975886
    [No Abstract]   [Full Text] [Related]  

  • 17. Power and chirp effects on the frequency stability of resonant dispersive waves generated in photonic crystal fibres.
    Cao T; Liu M; Xu C; Yan J; Shen C; Liu S; Peng H; Peng J; Sokolov AV
    Sci Rep; 2018 Jan; 8(1):181. PubMed ID: 29317707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier-envelope offset frequency measurement for tunable femtosecond lasers using resonant dispersive waves.
    Peng J; Zhu F; Benabid F; Sokolov AV
    Opt Lett; 2011 Mar; 36(6):891-3. PubMed ID: 21403719
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.