BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 21403737)

  • 21. Polarization insensitive flexible ultra-broadband terahertz metamaterial absorber.
    Song Z; Ma X; Jiang W; Zhang L; Jiang M; Hu F; Zeng L
    Appl Opt; 2023 Nov; 62(33):8905-8910. PubMed ID: 38038036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials.
    Feng QY; Yan DX; Li XJ; Li JN
    Appl Opt; 2022 May; 61(15):4336-4343. PubMed ID: 36256270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Tunable Terahertz Metamaterial Absorber Composed of Hourglass-Shaped Graphene Arrays.
    Qi Y; Zhang Y; Liu C; Zhang T; Zhang B; Wang L; Deng X; Wang X; Yu Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32192053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A five-band absorber based on graphene metamaterial for terahertz ultrasensing.
    Jiang W; Chen T
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35016165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective terahertz absorber for angle and polarization-independent spectral sensing.
    Arose C; Terracciano AC; Peale RE; Vasu SS
    Opt Lett; 2022 Mar; 47(6):1514-1516. PubMed ID: 35290352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-band and polarization-independent metamaterial terahertz narrowband absorber.
    Pan W; Shen T; Ma Y; Zhang Z; Yang H; Wang X; Zhang X; Li Y; Yang L
    Appl Opt; 2021 Mar; 60(8):2235-2241. PubMed ID: 33690320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves.
    Lu T; Zhang D; Qiu P; Lian J; Jing M; Yu B; Wen J; Zhuang S
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30404174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Tunable Terahertz Absorber Based on Double-Layer Patterned Graphene Metamaterials.
    Tang X; Jia H; Liu L; Li M; Wu D; Zhou K; Li P; Tian L; Yang D; Wang W
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Terahertz Broadband Absorber Based on a Combined Circular Disc Structure.
    Huang M; Wei K; Wu P; Xu D; Xu Y
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Dual-Band Terahertz Absorber with Two Passbands Based on Periodic Patterned Graphene.
    Zhang X; Wu W; Li C; Wang C; Ma Y; Yang Z; Sun G; Yuan N
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31533324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and fabrication of a microcoil metamaterial absorber for the sub-terahertz region.
    Agulto VC; Ling Z; Zhao Z; Feng S; Kato K; Haga M; Mag-Usara VK; Yoshimura M; Nakajima M
    Opt Lett; 2023 Dec; 48(23):6324-6327. PubMed ID: 38039258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal tuning of terahertz metamaterial absorber properties based on VO
    Zheng Z; Luo Y; Yang H; Yi Z; Zhang J; Song Q; Yang W; Liu C; Wu X; Wu P
    Phys Chem Chem Phys; 2022 Apr; 24(15):8846-8853. PubMed ID: 35356962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating.
    Du C; Zhou D; Guo HH; Pang YQ; Shi HY; Liu WF; Su JZ; Singh C; Trukhanov S; Trukhanov A; Panina L; Xu Z
    Nanoscale; 2020 May; 12(17):9769-9775. PubMed ID: 32324192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Penrose tiling-inspired graphene-covered multiband terahertz metamaterial absorbers.
    Didari-Bader A; Saghaei H
    Opt Express; 2023 Apr; 31(8):12653-12668. PubMed ID: 37157421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch.
    Wang BX; Xu W; Wu Y; Yang Z; Lai S; Lu L
    Nanoscale Adv; 2022 Mar; 4(5):1359-1367. PubMed ID: 36133689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber.
    Astorino MD; Fastampa R; Frezza F; Maiolo L; Marrani M; Missori M; Muzi M; Tedeschi N; Veroli A
    Sci Rep; 2018 Jan; 8(1):1985. PubMed ID: 29386562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.