These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 21404254)
1. Enzyme identification and development of a whole-cell biotransformation for asymmetric reduction of o-chloroacetophenone. Kratzer R; Pukl M; Egger S; Vogl M; Brecker L; Nidetzky B Biotechnol Bioeng; 2011 Apr; 108(4):797-803. PubMed ID: 21404254 [TBL] [Abstract][Full Text] [Related]
2. Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: economic evaluation of whole cell-catalyzed reduction of o-chloroacetophenone. Eixelsberger T; Woodley JM; Nidetzky B; Kratzer R Biotechnol Bioeng; 2013 Aug; 110(8):2311-5. PubMed ID: 23475609 [TBL] [Abstract][Full Text] [Related]
3. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH. Mädje K; Schmölzer K; Nidetzky B; Kratzer R Microb Cell Fact; 2012 Jan; 11():7. PubMed ID: 22236335 [TBL] [Abstract][Full Text] [Related]
4. [Saccharomyces cerevisiae B5 efficiently and stereoselectively reduces 2'-chloroacetophenone to R-2'-chloro-1-phenylethanol in the presence of 5% ethanol]. Ou ZM; Wu JP; Yang LR; Cen PL; Liu L; Qi N Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):206-11. PubMed ID: 15966323 [TBL] [Abstract][Full Text] [Related]
5. Harnessing Candida tenuis and Pichia stipitis in whole-cell bioreductions of o-chloroacetophenone: stereoselectivity, cell activity, in situ substrate supply and product removal. Gruber C; Krahulec S; Nidetzky B; Kratzer R Biotechnol J; 2013 Jun; 8(6):699-708. PubMed ID: 23589466 [TBL] [Abstract][Full Text] [Related]
6. Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol. Schmölzer K; Mädje K; Nidetzky B; Kratzer R Bioresour Technol; 2012 Mar; 108(C):216-23. PubMed ID: 22281147 [TBL] [Abstract][Full Text] [Related]
7. Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate with two co-existing, recombinant Escherichia coli strains. Liu Y; Xu Z; Jing K; Jiang X; Lin J; Wang F; Cen P Biotechnol Lett; 2005 Jan; 27(2):119-25. PubMed ID: 15703875 [TBL] [Abstract][Full Text] [Related]
8. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Jeong EY; Sopher C; Kim IS; Lee H Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric reduction of o-chloroacetophenone with Candida pseudotropicalis 104. Xie Q; Wu J; Xu G; Yang L Biotechnol Prog; 2006; 22(5):1301-4. PubMed ID: 17022667 [TBL] [Abstract][Full Text] [Related]
10. [Preparation of chiral alcohol by stereoselective reduction of acetophenone and chloroacetophenone with yeast cells]. Ou Z; Wu J; Yang L; Cen P Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):523-6. PubMed ID: 16276931 [TBL] [Abstract][Full Text] [Related]
11. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
12. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli. Kratzer R; Pukl M; Egger S; Nidetzky B Microb Cell Fact; 2008 Dec; 7():37. PubMed ID: 19077192 [TBL] [Abstract][Full Text] [Related]
13. Pushing the limits: Cyclodextrin-based intensification of bioreductions. Rapp C; Nidetzky B; Kratzer R J Biotechnol; 2021 Jan; 325():57-64. PubMed ID: 33220340 [TBL] [Abstract][Full Text] [Related]
14. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
15. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Hou J; Vemuri GN; Bao X; Olsson L Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731 [TBL] [Abstract][Full Text] [Related]
16. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
17. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
18. Xylose utilisation: cloning and characterisation of the Xylose reductase from Candida tenuis. Häcker B; Habenicht A; Kiess M; Mattes R Biol Chem; 1999 Dec; 380(12):1395-403. PubMed ID: 10661866 [TBL] [Abstract][Full Text] [Related]
19. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. Matsushika A; Sawayama S J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011 [TBL] [Abstract][Full Text] [Related]
20. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]