These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 21404444)
1. Hydrogen generation from formic acid decomposition by ruthenium carbonyl complexes. Tetraruthenium dodecacarbonyl tetrahydride as an active intermediate. Czaun M; Goeppert A; May R; Haiges R; Prakash GK; Olah GA ChemSusChem; 2011 Sep; 4(9):1241-8. PubMed ID: 21404444 [TBL] [Abstract][Full Text] [Related]
2. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Fellay C; Dyson PJ; Laurenczy G Angew Chem Int Ed Engl; 2008; 47(21):3966-8. PubMed ID: 18393267 [No Abstract] [Full Text] [Related]
3. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand. Pan Y; Pan CL; Zhang Y; Li H; Min S; Guo X; Zheng B; Chen H; Anders A; Lai Z; Zheng J; Huang KW Chem Asian J; 2016 May; 11(9):1357-60. PubMed ID: 27101381 [TBL] [Abstract][Full Text] [Related]
4. Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid. Nakahara Y; Toda T; Matsunami A; Kayaki Y; Kuwata S Chem Asian J; 2018 Jan; 13(1):73-80. PubMed ID: 29140603 [TBL] [Abstract][Full Text] [Related]
5. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3. Mellone I; Peruzzini M; Rosi L; Mellmann D; Junge H; Beller M; Gonsalvi L Dalton Trans; 2013 Feb; 42(7):2495-501. PubMed ID: 23212285 [TBL] [Abstract][Full Text] [Related]
7. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. Himeda Y; Miyazawa S; Hirose T ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682 [TBL] [Abstract][Full Text] [Related]
8. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Loges B; Boddien A; Junge H; Beller M Angew Chem Int Ed Engl; 2008; 47(21):3962-5. PubMed ID: 18457345 [No Abstract] [Full Text] [Related]
9. A ruthenium-based biomimetic hydrogen cluster for efficient photocatalytic hydrogen generation from formic acid. Chang CH; Chen MH; Du WS; Gliniak J; Lin JH; Wu HH; Chan HF; Yu JS; Wu TK Chemistry; 2015 Apr; 21(17):6617-22. PubMed ID: 25766997 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen storage and delivery: the carbon dioxide - formic acid couple. Laurenczy G Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175 [TBL] [Abstract][Full Text] [Related]
11. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution. Fukuzumi S; Kobayashi T; Suenobu T ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597 [TBL] [Abstract][Full Text] [Related]
12. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids. Li X; Ma X; Shi F; Deng Y ChemSusChem; 2010; 3(1):71-4. PubMed ID: 20033982 [No Abstract] [Full Text] [Related]
14. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight. Wang WH; Xu S; Manaka Y; Suna Y; Kambayashi H; Muckerman JT; Fujita E; Himeda Y ChemSusChem; 2014 Jul; 7(7):1976-83. PubMed ID: 24840600 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen generation at ambient conditions: application in fuel cells. Boddien A; Loges B; Junge H; Beller M ChemSusChem; 2008; 1(8-9):751-8. PubMed ID: 18686291 [TBL] [Abstract][Full Text] [Related]
16. Towards a practical setup for hydrogen production from formic acid. Sponholz P; Mellmann D; Junge H; Beller M ChemSusChem; 2013 Jul; 6(7):1172-6. PubMed ID: 23757329 [TBL] [Abstract][Full Text] [Related]
17. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes. Sponholz P; Mellmann D; Cordes C; Alsabeh PG; Li B; Li Y; Nielsen M; Junge H; Dixneuf P; Beller M ChemSusChem; 2014 Sep; 7(9):2419-22. PubMed ID: 25088665 [TBL] [Abstract][Full Text] [Related]
18. Hydrido-ruthenium cluster complexes as models for reactive surface hydrogen species of ruthenium nanoparticles. Solid-state 2H NMR and quantum chemical calculations. Gutmann T; Walaszek B; Yeping X; Wächtler M; del Rosal I; Grünberg A; Poteau R; Axet R; Lavigne G; Chaudret B; Limbach HH; Buntkowsky G J Am Chem Soc; 2010 Aug; 132(33):11759-67. PubMed ID: 20684514 [TBL] [Abstract][Full Text] [Related]
19. The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source. Jędrzejczyk M; Soszka E; Goscianska J; Kozanecki M; Grams J; Ruppert AM Molecules; 2020 Nov; 25(22):. PubMed ID: 33212838 [TBL] [Abstract][Full Text] [Related]
20. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts. Wang Y; Agarwal S; Kloekhorst A; Heeres HJ ChemSusChem; 2016 May; 9(9):951-61. PubMed ID: 26836970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]