BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21404444)

  • 41. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals.
    Jantke D; Pardatscher L; Drees M; Cokoja M; Herrmann WA; Kühn FE
    ChemSusChem; 2016 Oct; 9(19):2849-2854. PubMed ID: 27618800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy-gaining formation and catalytic behavior of active structures in a SiO(2)-supported unsaturated Ru complex catalyst for alkene epoxidation by DFT calculations.
    Coquet R; Tada M; Iwasawa Y
    Phys Chem Chem Phys; 2007 Dec; 9(45):6040-6. PubMed ID: 18004419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and characterization of iron(II) and ruthenium(II) hydrido hydrazine complexes.
    Field LD; Li HL; Dalgarno SJ; Jensen P; McIntosh RD
    Inorg Chem; 2011 Jun; 50(12):5468-76. PubMed ID: 21618998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactions of olefins with ruthenium hydride nanoparticles: NMR characterization, hydride titration, and room-temperature C--C bond activation.
    García-Antón J; Axet MR; Jansat S; Philippot K; Chaudret B; Pery T; Buntkowsky G; Limbach HH
    Angew Chem Int Ed Engl; 2008; 47(11):2074-8. PubMed ID: 18247441
    [No Abstract]   [Full Text] [Related]  

  • 45. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes.
    Tamaki Y; Morimoto T; Koike K; Ishitani O
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15673-8. PubMed ID: 22908243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.
    Jiang HL; Singh SK; Yan JM; Zhang XB; Xu Q
    ChemSusChem; 2010 May; 3(5):541-9. PubMed ID: 20379965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formic acid interaction with the uranyl(VI) ion: structural and photochemical characterization.
    Lucks C; Rossberg A; Tsushima S; Foerstendorf H; Fahmy K; Bernhard G
    Dalton Trans; 2013 Oct; 42(37):13584-9. PubMed ID: 23900668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and N-H reductive elimination study of dinuclear ruthenium imido dihydride complexes.
    Takemoto S; Yamazaki Y; Yamano T; Mashima D; Matsuzaka H
    J Am Chem Soc; 2012 Oct; 134(41):17027-35. PubMed ID: 22974189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Base-induced dehydrogenation of ruthenium hydrazine complexes.
    Field LD; Li HL; Dalgarno SJ; McIntosh RD
    Inorg Chem; 2013 Feb; 52(3):1570-83. PubMed ID: 23339416
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ruthenium-catalyzed dehydrogenation of ammonia boranes.
    Blaquiere N; Diallo-Garcia S; Gorelsky SI; Black DA; Fagnou K
    J Am Chem Soc; 2008 Oct; 130(43):14034-5. PubMed ID: 18831582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines.
    Sivagamasundari M; Ramesh R
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 May; 67(1):256-62. PubMed ID: 16949337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactivity of Silanes with (
    Anderson NH; Boncella JM; Tondreau AM
    Chemistry; 2017 Oct; 23(55):13617-13622. PubMed ID: 28812322
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C-H activated isomers of [M(AlCp*)5] (M=Fe, Ru).
    Steinke T; Cokoja M; Gemel C; Kempter A; Krapp A; Frenking G; Zenneck U; Fischer RA
    Angew Chem Int Ed Engl; 2005 May; 44(19):2943-6. PubMed ID: 15828045
    [No Abstract]   [Full Text] [Related]  

  • 55. Spectroscopic determination of hydrogenation rates and intermediates during carbonyl hydrogenation catalyzed by Shvo's hydroxycyclopentadienyl diruthenium hydride agrees with kinetic modeling based on independently measured rates of elementary reactions.
    Casey CP; Beetner SE; Johnson JB
    J Am Chem Soc; 2008 Feb; 130(7):2285-95. PubMed ID: 18215043
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ruthenium hydride-catalyzed addition of aldehydes to dienes leading to beta,gamma-unsaturated ketones.
    Omura S; Fukuyama T; Horiguchi J; Murakami Y; Ryu I
    J Am Chem Soc; 2008 Oct; 130(43):14094-5. PubMed ID: 18841894
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acid-, water- and high-temperature-stable ruthenium complexes for the total catalytic deoxygenation of glycerol to propane.
    Taher D; Thibault ME; Di Mondo D; Jennings M; Schlaf M
    Chemistry; 2009 Oct; 15(39):10132-43. PubMed ID: 19693757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aqueous light driven hydrogen production by a Ru-ferredoxin-Co biohybrid.
    Soltau SR; Niklas J; Dahlberg PD; Poluektov OG; Tiede DM; Mulfort KL; Utschig LM
    Chem Commun (Camb); 2015 Jul; 51(53):10628-31. PubMed ID: 26051070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study.
    Fellay C; Yan N; Dyson PJ; Laurenczy G
    Chemistry; 2009; 15(15):3752-60. PubMed ID: 19229942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.