BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21404936)

  • 1. Dehalogenation of trichloroethylene in microbial electrolysis cells with biogenic palladium nanoparticles.
    Hennebel T; De Gusseme B; Soetaert M; De Corte S; De Sloover J; Verstraete W; Boon N
    Commun Agric Appl Biol Sci; 2011; 76(2):59-61. PubMed ID: 21404936
    [No Abstract]   [Full Text] [Related]  

  • 2. Dehalogenation of trichloroethylene in microbial electrolysis cells with biogenic palladium nanoparticles.
    De Corte S; Hennebel T; Benner J; De Gusseme B; Verstraete W; Boon N
    Commun Agric Appl Biol Sci; 2011; 76(1):167-70. PubMed ID: 21539223
    [No Abstract]   [Full Text] [Related]  

  • 3. Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell.
    De Gusseme B; Hennebel T; Vanhaecke L; Soetaert M; Desloover J; Wille K; Verbeken K; Verstraete W; Boon N
    Environ Sci Technol; 2011 Jul; 45(13):5737-45. PubMed ID: 21663047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles.
    Hennebel T; Benner J; Clauwaert P; Vanhaecke L; Aelterman P; Callebaut R; Boon N; Verstraete W
    Biotechnol Lett; 2011 Jan; 33(1):89-95. PubMed ID: 20865443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen.
    Hennebel T; Van Nevel S; Verschuere S; De Corte S; De Gusseme B; Cuvelier C; Fitts JP; van der Lelie D; Boon N; Verstraete W
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1435-45. PubMed ID: 21590286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.
    Hennebel T; Verhagen P; Simoen H; De Gusseme B; Vlaeminck SE; Boon N; Verstraete W
    Chemosphere; 2009 Aug; 76(9):1221-5. PubMed ID: 19560796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles.
    Zhang M; Bacik DB; Roberts CB; Zhao D
    Water Res; 2013 Jul; 47(11):3706-15. PubMed ID: 23726707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges for modeling groundwater remediation: dehalogenation kinetics of trichloroethene vary between batch and column experiments.
    Haest PJ; Springael D; Smolders E
    Commun Agric Appl Biol Sci; 2007; 72(1):69-73. PubMed ID: 18018863
    [No Abstract]   [Full Text] [Related]  

  • 9. Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene.
    Lin CJ; Liou YH; Lo SL
    Chemosphere; 2009 Jan; 74(2):314-9. PubMed ID: 18992911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd-catalytic hydrodechlorination of chlorinated hydrocarbons in groundwater using H2 produced by a dual-anode system.
    Xie S; Yuan S; Liao P; Jia M; Wang Y
    Water Res; 2015 Dec; 86():74-81. PubMed ID: 26212567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles investigations of Pd-on-Au nanostructures for trichloroethene catalytic removal from groundwater.
    Andersin J; Honkala K
    Phys Chem Chem Phys; 2011 Jan; 13(4):1386-94. PubMed ID: 21152633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.
    Kirschling TL; Gregory KB; Minkley EG; Lowry GV; Tilton RD
    Environ Sci Technol; 2010 May; 44(9):3474-80. PubMed ID: 20350000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of reduced sulfur compounds on Pd-catalytic hydrodechlorination of trichloroethylene in groundwater by cathodic H2 under electrochemically induced oxidizing conditions.
    Yuan S; Chen M; Mao X; Alshawabkeh AN
    Environ Sci Technol; 2013 Sep; 47(18):10502-9. PubMed ID: 23962132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic nanopalladium based remediation of chlorinated hydrocarbons in marine environments.
    Hosseinkhani B; Hennebel T; Van Nevel S; Verschuere S; Yakimov MM; Cappello S; Blaghen M; Boon N
    Environ Sci Technol; 2014; 48(1):550-7. PubMed ID: 24350777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of pH and current on electrolytic dechlorination of trichloroethylene at a granular-graphite packed electrode.
    Al-Abed SR; Fang Y
    Chemosphere; 2006 Jun; 64(3):462-9. PubMed ID: 16384595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles.
    Wu L; Ritchie SM
    Chemosphere; 2006 Apr; 63(2):285-92. PubMed ID: 16226292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2-propanol/methanol/water system on ceria-supported Pd and Rh catalysts.
    Cobo M; Becerra J; Castelblanco M; Cifuentes B; Conesa JA
    J Environ Manage; 2015 Aug; 158():1-10. PubMed ID: 25932562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes.
    Emamjomeh MM; Sivakumar M
    J Environ Manage; 2009 Apr; 90(5):1663-79. PubMed ID: 19181438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.