BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21405012)

  • 1. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols.
    Pugh VJ; Hu QS; Zuo X; Lewis FD; Pu L
    J Org Chem; 2001 Sep; 66(18):6136-40. PubMed ID: 11529742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudoenantiomeric fluorescent sensors in a chiral assay.
    Yu S; Pu L
    J Am Chem Soc; 2010 Dec; 132(50):17698-700. PubMed ID: 21121601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly enantioselective fluorescent recognition of serine and other amino acid derivatives.
    Liu HL; Zhu HP; Hou XL; Pu L
    Org Lett; 2010 Sep; 12(18):4172-5. PubMed ID: 20726589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Intramolecular Charge Transfer Mechanism by Which Chiral Self-Assembled H
    Wang R; Song K; Wei Z; Sun Y; Sun X; Hu Y
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.
    Wu Y; Guo H; James TD; Zhao J
    J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols.
    Wanderley MM; Wang C; Wu CD; Lin W
    J Am Chem Soc; 2012 Jun; 134(22):9050-3. PubMed ID: 22607498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective fluorescent sensors for amino acid derivatives based on BINOL bearing S-tryptophan unit: synthesis and chiral recognition.
    Xu KX; Cheng PF; Zhao J; Wang CJ
    J Fluoresc; 2011 May; 21(3):991-1000. PubMed ID: 20054706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective recognition of mandelic acid with (R)-1,1-bi-2-naphthol-linked calix[4]arene via fluorescence and dynamic light scattering.
    Miao F; Zhou J; Tian D; Li H
    Org Lett; 2012 Jul; 14(14):3572-5. PubMed ID: 22746948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfonation of 3,3'-Diformyl-BINOL for Enantioselective Fluorescent Recognition of Amino Acids in Water.
    Zhao F; Wang Y; Wu X; Yu S; Yu X; Pu L
    Chemistry; 2020 Jun; 26(32):7258-7262. PubMed ID: 32128894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules.
    Li ZB; Lin J; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2007 Jun; 72(13):4905-16. PubMed ID: 17530897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clarification of a misconception in the BINOL-based fluorescent sensors: synthesis and study of major-groove BINOL-amino alcohols.
    Liu HL; Zhao QL; Hou XL; Pu L
    Chem Commun (Camb); 2011 Mar; 47(12):3646-8. PubMed ID: 21327239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, evaluation, and computational studies of naphthalimide-based long-wavelength fluorescent boronic Acid reporters.
    Jin S; Wang J; Li M; Wang B
    Chemistry; 2008; 14(9):2795-804. PubMed ID: 18228545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A BINOL-based chiral polyammonium receptor for highly enantioselective recognition and fluorescence sensing of (S,S)-tartaric acid in aqueous solution.
    Bencini A; Coluccini C; Garau A; Giorgi C; Lippolis V; Messori L; Pasini D; Puccioni S
    Chem Commun (Camb); 2012 Oct; 48(84):10428-30. PubMed ID: 22983504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective fluorescent recognition of mandelic acid by unsymmetrical salalen and salan sensors.
    Yang X; Liu X; Shen K; Fu Y; Zhang M; Zhu C; Cheng Y
    Org Biomol Chem; 2011 Sep; 9(17):6011-21. PubMed ID: 21743928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective fluorescent recognition of a soluble "supported" chiral acid: toward a new method for chiral catalyst screening.
    Li ZB; Lin J; Qin YC; Pu L
    Org Lett; 2005 Aug; 7(16):3441-4. PubMed ID: 16048312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H
    Wei Z; Tang S; Sun X; Hu Y
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diastereomeric resolution of rac-1,1'-bi-2-naphthol boronic acid with a chiral boron ligand and its application to simultaneous synthesis of (R)- and (S)-3,3'-disubstituted 1,1'-bi-2-naphthol derivatives.
    Lee CY; Cheon CH
    J Org Chem; 2013 Jul; 78(14):7086-92. PubMed ID: 23786156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.