BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 21405034)

  • 21. Modeling the amide I bands of small peptides.
    la Cour Jansen T; Dijkstra AG; Watson TM; Hirst JD; Knoester J
    J Chem Phys; 2006 Jul; 125(4):44312. PubMed ID: 16942147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DFT-based simulations of IR amide I' spectra for a small protein in solution. Comparison of explicit and empirical solvent models.
    Grahnen JA; Amunson KE; Kubelka J
    J Phys Chem B; 2010 Oct; 114(40):13011-20. PubMed ID: 20857992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the amide-I vibrations of model dipeptides with secondary structure sensitivity and amino acid residue specificity, and its application to amyloid β-peptide in aqueous solution.
    Cai K; Zheng X; Liu J; Du F; Yan G; Zhuang D; Yan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():391-400. PubMed ID: 31059891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing Backbone Coupling within Hydrated Proteins with Two-Color 2D Infrared Spectroscopy.
    Madzharova F; Chatterley AS; Roeters SJ; Weidner T
    J Phys Chem Lett; 2024 May; 15(18):4933-4939. PubMed ID: 38686860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using 2D-IR Spectroscopy to Measure the Structure, Dynamics, and Intermolecular Interactions of Proteins in H
    Hunt NT
    Acc Chem Res; 2024 Mar; 57(5):685-692. PubMed ID: 38364823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.
    Góbi S; Magyarfalvi G; Tarczay G
    Chirality; 2015 Sep; 27(9):625-34. PubMed ID: 26087405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.
    Cai K; Han C; Wang J
    Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water.
    Kubelka J; Huang R; Keiderling TA
    J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic polarizable force field for amide groups in polypeptides.
    Schropp B; Wichmann C; Tavan P
    J Phys Chem B; 2010 May; 114(19):6740-50. PubMed ID: 20411916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Empirical relationships between isotope-edited IR spectra and helix geometry in model peptides.
    Barber-Armstrong W; Donaldson T; Wijesooriya H; Silva RA; Decatur SM
    J Am Chem Soc; 2004 Mar; 126(8):2339-45. PubMed ID: 14982437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra.
    Maekawa H; Ge NH
    J Phys Chem B; 2010 Jan; 114(3):1434-46. PubMed ID: 20050636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvent dependence of the N-methylacetamide structure and force field.
    Andrushchenko V; Matejka P; Anderson DT; Kaminský J; Hornícek J; Paulson LO; Bour P
    J Phys Chem A; 2009 Sep; 113(35):9727-36. PubMed ID: 19663410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas-phase peptide structures unraveled by far-IR spectroscopy: combining IR-UV ion-dip experiments with Born-Oppenheimer molecular dynamics simulations.
    Jaeqx S; Oomens J; Cimas A; Gaigeot MP; Rijs AM
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3663-6. PubMed ID: 24574197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.
    Woys AM; Almeida AM; Wang L; Chiu CC; McGovern M; de Pablo JJ; Skinner JL; Gellman SH; Zanni MT
    J Am Chem Soc; 2012 Nov; 134(46):19118-28. PubMed ID: 23113791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linear and two-dimensional infrared spectroscopic study of the amide I and II modes in fully extended peptide chains.
    Maekawa H; Ballano G; Toniolo C; Ge NH
    J Phys Chem B; 2011 May; 115(18):5168-82. PubMed ID: 20845957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What vibrations tell us about proteins.
    Barth A; Zscherp C
    Q Rev Biophys; 2002 Nov; 35(4):369-430. PubMed ID: 12621861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A polarizable force field for computing the infrared spectra of the polypeptide backbone.
    Schultheis V; Reichold R; Schropp B; Tavan P
    J Phys Chem B; 2008 Oct; 112(39):12217-30. PubMed ID: 18781720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Refining Disordered Peptide Ensembles with Computational Amide I Spectroscopy: Application to Elastin-Like Peptides.
    Reppert M; Roy AR; Tempkin JO; Dinner AR; Tokmakoff A
    J Phys Chem B; 2016 Nov; 120(44):11395-11404. PubMed ID: 27736076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amide I vibrational frequencies of alpha-helical peptides based upon ONIOM and density functional theory (DFT) studies.
    Wieczorek R; Dannenberg JJ
    J Phys Chem B; 2008 Jan; 112(4):1320-8. PubMed ID: 18179198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.