BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21405111)

  • 1. Cellular trafficking and photochemical internalization of cell penetrating peptide linked cargo proteins: a dual fluorescent labeling study.
    Gillmeister MP; Betenbaugh MJ; Fishman PS
    Bioconjug Chem; 2011 Apr; 22(4):556-66. PubMed ID: 21405111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tat-tetanus toxin fragment C: a novel protein delivery vector and its use with photochemical internalization.
    Gramlich PA; Remington MP; Amin J; Betenbaugh MJ; Fishman PS
    J Drug Target; 2013 Aug; 21(7):662-74. PubMed ID: 23697582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular protein target detection by quantum dots optimized for live cell imaging.
    Choi Y; Kim K; Hong S; Kim H; Kwon YJ; Song R
    Bioconjug Chem; 2011 Aug; 22(8):1576-86. PubMed ID: 21718016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of agonist-dependent parathyroid hormone receptor trafficking in whole cells using a functional green fluorescent protein conjugate.
    Conway BR; Minor LK; Xu JZ; D'Andrea MR; Ghosh RN; Demarest KT
    J Cell Physiol; 2001 Dec; 189(3):341-55. PubMed ID: 11748592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of rab5 activation in endocytosis and phagocytosis.
    Roberts RL; Barbieri MA; Ullrich J; Stahl PD
    J Leukoc Biol; 2000 Nov; 68(5):627-32. PubMed ID: 11073100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can the Cellular Internalization of Cargo Proteins Be Enhanced by Fusing a Tat Peptide in the Center of Proteins? A Fluorescence Study.
    Chen X; Chen J; Fu R; Rao P; Weller R; Bradshaw J; Liu S
    J Pharm Sci; 2018 Mar; 107(3):879-886. PubMed ID: 29133235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay.
    Kim JS; Choi DK; Park SW; Shin SM; Bae J; Kim DM; Yoo TH; Kim YS
    Biochem Biophys Res Commun; 2015 Nov; 467(4):771-7. PubMed ID: 26482850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide.
    Wang H; Zhong CY; Wu JF; Huang YB; Liu CB
    J Control Release; 2010 Apr; 143(1):64-70. PubMed ID: 20025914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells.
    Albarran B; To R; Stayton PS
    Protein Eng Des Sel; 2005 Mar; 18(3):147-52. PubMed ID: 15820981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption.
    Shiraishi T; Nielsen PE
    Nat Protoc; 2006; 1(2):633-6. PubMed ID: 17406290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions.
    Roux S; Colasante C; Saint Cloment C; Barbier J; Curie T; Girard E; Molgó J; Brûlet P
    Mol Cell Neurosci; 2005 Sep; 30(1):79-89. PubMed ID: 16023367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions.
    Roux S; Colasante C; Saint Cloment C; Barbier J; Curie T; Girard E; Molgó J; Brûlet P
    Mol Cell Neurosci; 2005 Dec; 30(4):572-82. PubMed ID: 16456925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase.
    Lee CY; Li JF; Liou JS; Charng YC; Huang YW; Lee HJ
    Biomaterials; 2011 Sep; 32(26):6264-76. PubMed ID: 21636125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of GFP to localize Rho GTPases in living cells.
    Michaelson D; Philips M
    Methods Enzymol; 2006; 406():296-315. PubMed ID: 16472666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicolor protein labeling in living cells using mutant β-lactamase-tag technology.
    Watanabe S; Mizukami S; Hori Y; Kikuchi K
    Bioconjug Chem; 2010 Dec; 21(12):2320-6. PubMed ID: 20961132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of glycosaminoglycan binding and clustering to the biological uptake of the nonamphipathic cell-penetrating peptide WR9.
    Ziegler A; Seelig J
    Biochemistry; 2011 May; 50(21):4650-64. PubMed ID: 21491915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery.
    Massodi I; Bidwell GL; Raucher D
    J Control Release; 2005 Nov; 108(2-3):396-408. PubMed ID: 16157413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction and functional study of a cell penetrating peptide-based expression vector for targeted delivery of proteins into the cell nuclei].
    Li HY; Guo AH; Liu ZF; Liu Y; Liu JH; Deng P; Li ZJ; Liu YW; Jiang Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Oct; 26(10):1394-9, 1407. PubMed ID: 17062334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAP-mediated nuclear delivery of a cargo protein.
    Kenien R; Zaro JL; Shen WC
    J Drug Target; 2012 May; 20(4):329-37. PubMed ID: 22225540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the role of protein folding and assembly in cell-type dependent expression of alpha7 nicotinic receptors using a green fluorescent protein chimera.
    Lee HK; Gwalani L; Mishra V; Anandjiwala P; Sala F; Sala S; Ballesta JJ; O'Malley D; Criado M; Loring RH
    Brain Res; 2009 Mar; 1259():7-16. PubMed ID: 19368825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.