These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 21405120)
1. Vibrational density of states of hydration water at biomolecular sites: hydrophobicity promotes low density amorphous ice behavior. Russo D; Teixeira J; Kneller L; Copley JR; Ollivier J; Perticaroli S; Pellegrini E; Gonzalez MA J Am Chem Soc; 2011 Apr; 133(13):4882-8. PubMed ID: 21405120 [TBL] [Abstract][Full Text] [Related]
2. Water hydrogen bond analysis on hydrophilic and hydrophobic biomolecule sites. Russo D; Ollivier J; Teixeira J Phys Chem Chem Phys; 2008 Aug; 10(32):4968-74. PubMed ID: 18688541 [TBL] [Abstract][Full Text] [Related]
3. Evidence of dynamical constraints imposed by water organization around a bio-hydrophobic interface. Russo D; Gonzalez MA; Pellegrini E; Combet J; Ollivier J; Teixeira J J Phys Chem B; 2013 Mar; 117(10):2829-36. PubMed ID: 23414252 [TBL] [Abstract][Full Text] [Related]
4. Dissecting the energetics of hydrophobic hydration of polypeptides. Matysiak S; Debenedetti PG; Rossky PJ J Phys Chem B; 2011 Dec; 115(49):14859-65. PubMed ID: 22035038 [TBL] [Abstract][Full Text] [Related]
5. Influence of pressure on the low-frequency vibrational modes of lysozyme and water: a complementary inelastic neutron scattering and molecular dynamics simulation study. Lerbret A; Hédoux A; Annighöfer B; Bellissent-Funel MC Proteins; 2013 Feb; 81(2):326-40. PubMed ID: 23011876 [TBL] [Abstract][Full Text] [Related]
6. Fingerprints of amorphous icelike behavior in the vibrational density of states of protein hydration water. Paciaroni A; Orecchini A; Cornicchi E; Marconi M; Petrillo C; Haertlein M; Moulin M; Schober H; Tarek M; Sacchetti F Phys Rev Lett; 2008 Oct; 101(14):148104. PubMed ID: 18851580 [TBL] [Abstract][Full Text] [Related]
7. Low-frequency vibrational spectrum of water in the hydration layer of a protein: a molecular dynamics simulation study. Chakraborty S; Sinha SK; Bandyopadhyay S J Phys Chem B; 2007 Dec; 111(48):13626-31. PubMed ID: 17994720 [TBL] [Abstract][Full Text] [Related]
8. Low-frequency vibrational spectrum of water around cyclodextrin and its methyl-substituted derivatives. Jana M; Bandyopadhyay S Langmuir; 2010 Sep; 26(17):14097-102. PubMed ID: 20704347 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic molecules slow down the hydrogen-bond dynamics of water. Bakulin AA; Pshenichnikov MS; Bakker HJ; Petersen C J Phys Chem A; 2011 Mar; 115(10):1821-9. PubMed ID: 21214234 [TBL] [Abstract][Full Text] [Related]
10. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: a Raman scattering and molecular dynamics simulation study. Lerbret A; Affouard F; Bordat P; Hédoux A; Guinet Y; Descamps M J Chem Phys; 2009 Dec; 131(24):245103. PubMed ID: 20059115 [TBL] [Abstract][Full Text] [Related]
11. Thermal signature of hydrophobic hydration dynamics. Qvist J; Halle B J Am Chem Soc; 2008 Aug; 130(31):10345-53. PubMed ID: 18624406 [TBL] [Abstract][Full Text] [Related]
12. The low-temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments. Lagi M; Chu X; Kim C; Mallamace F; Baglioni P; Chen SH J Phys Chem B; 2008 Feb; 112(6):1571-5. PubMed ID: 18205352 [TBL] [Abstract][Full Text] [Related]
13. Inelastic neutron scattering studies of the interaction between water and some amino acids. Zhang Y; Zhang P; Ford RC; Han S; Li J J Phys Chem B; 2005 Sep; 109(38):17784-6. PubMed ID: 16853278 [TBL] [Abstract][Full Text] [Related]
14. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin. Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350 [TBL] [Abstract][Full Text] [Related]
15. Inelastic neutron scattering study of confined surface water on rutile nanoparticles. Spencer EC; Levchenko AA; Ross NL; Kolesnikov AI; Boerio-Goates J; Woodfield BF; Navrotsky A; Li G J Phys Chem A; 2009 Mar; 113(12):2796-800. PubMed ID: 19243118 [TBL] [Abstract][Full Text] [Related]
16. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface. Vila Verde A; Bolhuis PG; Campen RK J Phys Chem B; 2012 Aug; 116(31):9467-81. PubMed ID: 22788714 [TBL] [Abstract][Full Text] [Related]
17. Effects of co-solvents on peptide hydration water structure and dynamics. Johnson ME; Malardier-Jugroot C; Head-Gordon T Phys Chem Chem Phys; 2010 Jan; 12(2):393-405. PubMed ID: 20023817 [TBL] [Abstract][Full Text] [Related]
18. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment. Lounnas V; Pettitt BM Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy. Paolantoni M; Sassi P; Morresi A; Santini S J Chem Phys; 2007 Jul; 127(2):024504. PubMed ID: 17640134 [TBL] [Abstract][Full Text] [Related]
20. Anomalous behavior of proton zero point motion in water confined in carbon nanotubes. Reiter G; Burnham C; Homouz D; Platzman PM; Mayers J; Abdul-Redah T; Moravsky AP; Li JC; Loong CK; Kolesnikov AI Phys Rev Lett; 2006 Dec; 97(24):247801. PubMed ID: 17280326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]