These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21405129)

  • 1. Band gap opening by two-dimensional manifestation of peierls instability in graphene.
    Lee SH; Chung HJ; Heo J; Yang H; Shin J; Chung UI; Seo S
    ACS Nano; 2011 Apr; 5(4):2964-9. PubMed ID: 21405129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators.
    Lin Z; Qin W; Zeng J; Chen W; Cui P; Cho JH; Qiao Z; Zhang Z
    Nano Lett; 2017 Jul; 17(7):4013-4018. PubMed ID: 28534404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peierls instability in one-dimensional borine wire on Si(001).
    Choi JH; Cho JH
    J Am Chem Soc; 2006 Sep; 128(35):11340-1. PubMed ID: 16939242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of gap opening in a triple-band Peierls system: in atomic wires on Si.
    Ahn JR; Byun JH; Koh H; Rotenberg E; Kevan SD; Yeom HW
    Phys Rev Lett; 2004 Sep; 93(10):106401. PubMed ID: 15447426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peierls-type instability and tunable band gap in functionalized graphene.
    Abanin DA; Shytov AV; Levitov LS
    Phys Rev Lett; 2010 Aug; 105(8):086802. PubMed ID: 20868123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
    Ni ZH; Yu T; Lu YH; Wang YY; Feng YP; Shen ZX
    ACS Nano; 2008 Nov; 2(11):2301-5. PubMed ID: 19206396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.
    Kou L; Hu F; Yan B; Frauenheim T; Chen C
    Nanoscale; 2014 Jul; 6(13):7474-9. PubMed ID: 24881864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-gap opening and quenching in graphene under periodic external potentials.
    Zhang A; Dai Z; Shi L; Feng YP; Zhang C
    J Chem Phys; 2010 Dec; 133(22):224705. PubMed ID: 21171694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative importance of local and collective effects in the distortivity of one-dimensional chains.
    Robert V; Malrieu JP
    J Chem Phys; 2004 May; 120(18):8853-61. PubMed ID: 15267817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tight binding description on the band gap opening of pyrene-dispersed graphene.
    Chen DM; Shenai PM; Zhao Y
    Phys Chem Chem Phys; 2011 Jan; 13(4):1515-20. PubMed ID: 21113551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning aromaticity patterns and electronic properties of armchair graphene nanoribbons with chemical edge functionalisation.
    Martin-Martinez FJ; Fias S; Van Lier G; De Proft F; Geerlings P
    Phys Chem Chem Phys; 2013 Aug; 15(30):12637-47. PubMed ID: 23787877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Evidence of Chiral Symmetry Breaking in Kekulé-Ordered Graphene.
    Bao C; Zhang H; Zhang T; Wu X; Luo L; Zhou S; Li Q; Hou Y; Yao W; Liu L; Yu P; Li J; Duan W; Yao H; Wang Y; Zhou S
    Phys Rev Lett; 2021 May; 126(20):206804. PubMed ID: 34110212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and chemical properties of silicene: unlike graphene.
    Jose D; Datta A
    Acc Chem Res; 2014 Feb; 47(2):593-602. PubMed ID: 24215179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation-Driven Dimerization and Topological Gap Opening in Isotropically Strained Graphene.
    Sorella S; Seki K; Brovko OO; Shirakawa T; Miyakoshi S; Yunoki S; Tosatti E
    Phys Rev Lett; 2018 Aug; 121(6):066402. PubMed ID: 30141665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects analogous to the Kekulé distortion induced by pseudospin polarization in graphene nanoribbons: confinement and coupling by breakdown of chiral correlation.
    Mendoza M; López LIA
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35667369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation induced insulator to metal transition: a systematic density functional study on highly doped n-type trans-polyacetylene.
    Sen S; Chakrabarti S
    J Chem Phys; 2006 Jan; 124(3):034702. PubMed ID: 16438595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P; Wu X; Guo W; Zeng XC
    Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays.
    Zhang YT; Li QM; Li YC; Zhang YY; Zhai F
    J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.