These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. The reconstruction of transcriptional networks reveals critical genes with implications for clinical outcome of multiple myeloma. Agnelli L; Forcato M; Ferrari F; Tuana G; Todoerti K; Walker BA; Morgan GJ; Lombardi L; Bicciato S; Neri A Clin Cancer Res; 2011 Dec; 17(23):7402-12. PubMed ID: 21890453 [TBL] [Abstract][Full Text] [Related]
48. Simultaneous inference and clustering of transcriptional dynamics in gene regulatory networks. Asif HM; Sanguinetti G Stat Appl Genet Mol Biol; 2013 Oct; 12(5):545-57. PubMed ID: 24051920 [TBL] [Abstract][Full Text] [Related]
49. DoGeNetS: using optimisation to discriminate regulatory network topologies based on gene expression data. Camargo-Rodriguez AV; Kim JT IET Syst Biol; 2012 Feb; 6(1):1-8. PubMed ID: 22360266 [TBL] [Abstract][Full Text] [Related]
50. bLARS: An Algorithm to Infer Gene Regulatory Networks. Singh N; Vidyasagar M IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):301-14. PubMed ID: 27045829 [TBL] [Abstract][Full Text] [Related]
52. Network component analysis: reconstruction of regulatory signals in biological systems. Liao JC; Boscolo R; Yang YL; Tran LM; Sabatti C; Roychowdhury VP Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15522-7. PubMed ID: 14673099 [TBL] [Abstract][Full Text] [Related]
53. Inferring genetic networks from DNA microarray data by multiple regression analysis. Kato M; Tsunoda T; Takagi T Genome Inform Ser Workshop Genome Inform; 2000; 11():118-28. PubMed ID: 11700593 [TBL] [Abstract][Full Text] [Related]
54. Identification of genetic network dynamics with unate structure. Porreca R; Cinquemani E; Lygeros J; Ferrari-Trecate G Bioinformatics; 2010 May; 26(9):1239-45. PubMed ID: 20305266 [TBL] [Abstract][Full Text] [Related]
55. Smoothing gene expression data with network information improves consistency of regulated genes. Dørum G; Snipen L; Solheim M; Saebo S Stat Appl Genet Mol Biol; 2011 Aug; 10(1):. PubMed ID: 23089828 [TBL] [Abstract][Full Text] [Related]
56. Contribution of microarray data to the advancement of knowledge on the Mycobacterium tuberculosis interactome: use of the random partial least squares approach. Mazandu GK; Opap K; Mulder NJ Infect Genet Evol; 2011 Jun; 11(4):725-33. PubMed ID: 21514402 [TBL] [Abstract][Full Text] [Related]
57. A generalized framework for network component analysis. Boscolo R; Sabatti C; Liao JC; Roychowdhury VP IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(4):289-301. PubMed ID: 17044167 [TBL] [Abstract][Full Text] [Related]
58. Gene interaction networks based on kernel correlation metrics. Cheng L; Khorasani K; Ding Y; Guo X Int J Comput Biol Drug Des; 2013; 6(1-2):72-92. PubMed ID: 23428475 [TBL] [Abstract][Full Text] [Related]
59. Effective non-linear methods for inferring genetic regulation from time-series microarray gene expression data. Wang J; Tian T Methods Mol Biol; 2012; 802():235-46. PubMed ID: 22130884 [TBL] [Abstract][Full Text] [Related]
60. Comparison of statistical methods for finding network motifs. Albieri V; Didelez V Stat Appl Genet Mol Biol; 2014 Aug; 13(4):403-22. PubMed ID: 24933631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]