These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21405276)

  • 1. Blood vessel deformations on microsecond time scales by ultrasonic cavitation.
    Chen H; Kreider W; Brayman AA; Bailey MR; Matula TJ
    Phys Rev Lett; 2011 Jan; 106(3):034301. PubMed ID: 21405276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels.
    Chen H; Brayman AA; Kreider W; Bailey MR; Matula TJ
    Ultrasound Med Biol; 2011 Dec; 37(12):2139-48. PubMed ID: 22036639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood vessel rupture by cavitation.
    Chen H; Brayman AA; Bailey MR; Matula TJ
    Urol Res; 2010 Aug; 38(4):321-6. PubMed ID: 20680255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of the biomechanical effects on micro-vessels by ultrasound-driven cavitation.
    Liu W; Hu J; Liu Y; Lei W; Chen X
    Acta Bioeng Biomech; 2021; 23(1):95-105. PubMed ID: 34846033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance frequency of microbubbles in small blood vessels: a numerical study.
    Sassaroli E; Hynynen K
    Phys Med Biol; 2005 Nov; 50(22):5293-305. PubMed ID: 16264254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects.
    Chen H; Brayman AA; Evan AP; Matula TJ
    Ultrasound Med Biol; 2012 Dec; 38(12):2151-62. PubMed ID: 23069136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study.
    Hosseinkhah N; Chen H; Matula TJ; Burns PN; Hynynen K
    J Acoust Soc Am; 2013 Sep; 134(3):1875-85. PubMed ID: 23967921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound-driven microbubble oscillation and translation within small phantom vessels.
    Zheng H; Dayton PA; Caskey C; Zhao S; Qin S; Ferrara KW
    Ultrasound Med Biol; 2007 Dec; 33(12):1978-87. PubMed ID: 17900793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
    Hosseinkhah N; Hynynen K
    Phys Med Biol; 2012 Feb; 57(3):785-808. PubMed ID: 22252221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The natural frequencies of microbubble oscillation in elastic vessels.
    Martynov S; Stride E; Saffari N
    J Acoust Soc Am; 2009 Dec; 126(6):2963-72. PubMed ID: 20000909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound.
    Shen ZY; Jiang YM; Zhou YF; Si HF; Wang L
    Ultrason Sonochem; 2018 Jan; 40(Pt A):980-987. PubMed ID: 28946510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble growth in cylindrically-shaped optical absorbers during photo-mediated ultrasound therapy.
    Li S; Qin Y; Wang X; Yang X
    Phys Med Biol; 2018 Jun; 63(12):125017. PubMed ID: 29794345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall.
    Krasovitski B; Kimmel E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):973-9. PubMed ID: 15344403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of the influence of therapeutic ultrasound exposures on the vasculature: high intensity ultrasound and microbubble-mediated bioeffects.
    Goertz DE
    Int J Hyperthermia; 2015 Mar; 31(2):134-44. PubMed ID: 25716770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the acoustic response from contrast agent microbubbles near a rigid wall.
    Doinikov AA; Zhao S; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):195-201. PubMed ID: 18789469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristic microvessel relaxation timescales associated with ultrasound-activated microbubbles.
    Chen H; Brayman AA; Matula TJ
    Appl Phys Lett; 2012 Oct; 101(16):163704. PubMed ID: 23152641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of contrast agent destruction.
    Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers.
    Vyas N; Dehghani H; Sammons RL; Wang QX; Leppinen DM; Walmsley AD
    Ultrasonics; 2017 Nov; 81():66-72. PubMed ID: 28595164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles.
    Postema M; van Wamel A; ten Cate FJ; de Jong N
    Med Phys; 2005 Dec; 32(12):3707-11. PubMed ID: 16475770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.