BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21405298)

  • 21. Controlled defects in semiconducting carbon nanotubes promote efficient generation and luminescence of trions.
    Brozena AH; Leeds JD; Zhang Y; Fourkas JT; Wang Y
    ACS Nano; 2014 May; 8(5):4239-47. PubMed ID: 24669843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy.
    Nagatsu K; Chiashi S; Konabe S; Homma Y
    Phys Rev Lett; 2010 Oct; 105(15):157403. PubMed ID: 21230938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy.
    Torrens ON; Zheng M; Kikkawa JM
    Phys Rev Lett; 2008 Oct; 101(15):157401. PubMed ID: 18999637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes.
    Park CH; Spataru CD; Louie SG
    Phys Rev Lett; 2006 Mar; 96(12):126105. PubMed ID: 16605933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells.
    Płochocka P; Kossacki P; Maślana W; Cibert J; Tatarenko S; Radzewicz C; Gaj JA
    Phys Rev Lett; 2004 Apr; 92(17):177402. PubMed ID: 15169190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing Excitons, Trions, and Dark Excitons in Monolayer WS
    McDonnell LP; Huang CC; Cui Q; Hewak DW; Smith DC
    Nano Lett; 2018 Feb; 18(2):1428-1434. PubMed ID: 29297693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoinduced Dynamics in Carbon Nanotube Aggregates Steered by Dark Excitons.
    Postupna O; Jaeger HM; Prezhdo OV
    J Phys Chem Lett; 2014 Nov; 5(21):3872-7. PubMed ID: 26278762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.
    Bellus MZ; Ceballos F; Chiu HY; Zhao H
    ACS Nano; 2015 Jun; 9(6):6459-64. PubMed ID: 26046238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exciton states and optical properties of carbon nanotubes.
    Ajiki H
    J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks.
    Wieland S; El Yumin AA; Gotthardt JM; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):3112-3122. PubMed ID: 36824583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photon Correlation Spectroscopy of Luminescent Quantum Defects in Carbon Nanotubes.
    Nutz M; Zhang J; Kim M; Kwon H; Wu X; Wang Y; Högele A
    Nano Lett; 2019 Oct; 19(10):7078-7084. PubMed ID: 31478677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-particle correlation from a Many-Body Perspective: Trions in a Carbon Nanotube.
    Deilmann T; Drüppel M; Rohlfing M
    Phys Rev Lett; 2016 May; 116(19):196804. PubMed ID: 27232034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect.
    Matsunaga R; Matsuda K; Kanemitsu Y
    Phys Rev Lett; 2008 Oct; 101(14):147404. PubMed ID: 18851574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fine structure of highly charged excitons in semiconductor quantum dots.
    Urbaszek B; Warburton RJ; Karrai K; Gerardot BD; Petroff PM; Garcia JM
    Phys Rev Lett; 2003 Jun; 90(24):247403. PubMed ID: 12857227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Pump Photon Energy on Generation and Ultrafast Relaxation of Excitons and Charge Carriers in CdSe Nanoplatelets.
    Failla M; García Flórez F; Salzmann BBV; Vanmaekelbergh D; Stoof HTC; Siebbeles LDA
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(4):1899-1907. PubMed ID: 36761230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.