These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21405333)

  • 1. Measurable lattice effects on the charge and magnetic response in graphene.
    Gómez-Santos G; Stauber T
    Phys Rev Lett; 2011 Jan; 106(4):045504. PubMed ID: 21405333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Many-body orbital paramagnetism in doped graphene sheets.
    Principi A; Polini M; Vignale G; Katsnelson MI
    Phys Rev Lett; 2010 Jun; 104(22):225503. PubMed ID: 20867181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic Friedel oscillations in graphene-like materials: The Dirac point approximation in wave-number dependent quantities revisited.
    Farajollahpour T; Khamouei S; Shateri SS; Phirouznia A
    Sci Rep; 2018 Feb; 8(1):2667. PubMed ID: 29422619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coulomb impurity problem in graphene.
    Pereira VM; Nilsson J; Castro Neto AH
    Phys Rev Lett; 2007 Oct; 99(16):166802. PubMed ID: 17995277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tight-binding modeling and low-energy behavior of the semi-Dirac point.
    Banerjee S; Singh RR; Pardo V; Pickett WE
    Phys Rev Lett; 2009 Jul; 103(1):016402. PubMed ID: 19659161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RKKY interaction in heavily vacant graphene.
    Habibi A; Jafari SA
    J Phys Condens Matter; 2013 Sep; 25(37):375501. PubMed ID: 23962815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: evidence of low nitrogen doping and high charge transfer.
    Velez-Fort E; Mathieu C; Pallecchi E; Pigneur M; Silly MG; Belkhou R; Marangolo M; Shukla A; Sirotti F; Ouerghi A
    ACS Nano; 2012 Dec; 6(12):10893-900. PubMed ID: 23148722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From dia- to paramagnetic orbital susceptibility of massless fermions.
    Raoux A; Morigi M; Fuchs JN; Piéchon F; Montambaux G
    Phys Rev Lett; 2014 Jan; 112(2):026402. PubMed ID: 24484031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic interaction between nitrogen atoms in doped graphene.
    Tison Y; Lagoute J; Repain V; Chacon C; Girard Y; Rousset S; Joucken F; Sharma D; Henrard L; Amara H; Ghedjatti A; Ducastelle F
    ACS Nano; 2015 Jan; 9(1):670-8. PubMed ID: 25558891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two dimensional Dirac carbon allotropes from graphene.
    Xu LC; Wang RZ; Miao MS; Wei XL; Chen YP; Yan H; Lau WM; Liu LM; Ma YM
    Nanoscale; 2014 Jan; 6(2):1113-8. PubMed ID: 24296630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural, electronic and magnetic properties of manganese doping in the upper layer of bilayer graphene.
    Mao Y; Zhong J
    Nanotechnology; 2008 May; 19(20):205708. PubMed ID: 21825751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dirac model of electronic transport in graphene antidot barriers.
    Thomsen MR; Brun SJ; Pedersen TG
    J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hall conductance in graphene with point defects.
    İslamoğlu S; Oktel MÖ; Gülseren O
    J Phys Condens Matter; 2013 Feb; 25(5):055302. PubMed ID: 23300159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of plasmarons in quasi-freestanding doped graphene.
    Bostwick A; Speck F; Seyller T; Horn K; Polini M; Asgari R; MacDonald AH; Rotenberg E
    Science; 2010 May; 328(5981):999-1002. PubMed ID: 20489018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsteady ballistic heat transport in two-dimensional harmonic graphene lattice.
    Panchenko AY; Kuzkin VA; Berinskii IE
    J Phys Condens Matter; 2022 Feb; 34(16):. PubMed ID: 35114650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models.
    Brun SJ; Thomsen MR; Pedersen TG
    J Phys Condens Matter; 2014 Jul; 26(26):265301. PubMed ID: 24911836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice match and lattice mismatch models of graphene on hexagonal boron nitride from first principles.
    Zhao X; Li L; Zhao M
    J Phys Condens Matter; 2014 Mar; 26(9):095002. PubMed ID: 24521541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains.
    Ito Y; Christodoulou C; Nardi MV; Koch N; Kläui M; Sachdev H; Müllen K
    J Am Chem Soc; 2015 Jun; 137(24):7678-85. PubMed ID: 25932672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene.
    Cheianov VV; Fal'ko VI
    Phys Rev Lett; 2006 Dec; 97(22):226801. PubMed ID: 17155824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.