These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 21405399)

  • 1. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.
    Hong H; Strogatz SH
    Phys Rev Lett; 2011 Feb; 106(5):054102. PubMed ID: 21405399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformists and contrarians in a Kuramoto model with identical natural frequencies.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046202. PubMed ID: 22181240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing nonstationary coherent states in globally coupled conformist and contrarian oscillators.
    Qiu T; Boccaletti S; Liu Z; Guan S
    Phys Rev E; 2019 Nov; 100(5-1):052310. PubMed ID: 31870024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistable states in a system of coupled phase oscillators with inertia.
    Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y
    Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traveling wave in a three-dimensional array of conformist and contrarian oscillators.
    Hoang DT; Jo J; Hong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032135. PubMed ID: 25871082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the Kuramoto model in the presence of correlation between distributions of frequencies and coupling strengths.
    Yuan D; Zhang M; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012910. PubMed ID: 24580300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization and Bellerophon states in conformist and contrarian oscillators.
    Qiu T; Boccaletti S; Bonamassa I; Zou Y; Zhou J; Liu Z; Guan S
    Sci Rep; 2016 Nov; 6():36713. PubMed ID: 27827411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrariety and inhibition enhance synchronization in a small-world network of phase oscillators.
    Nikfard T; Tabatabaei YH; Shahbazi F
    Phys Rev E; 2021 Nov; 104(5-1):054213. PubMed ID: 34942811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056210. PubMed ID: 23004846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient approach to suppress the negative role of contrarian oscillators in synchronization.
    Zhang X; Ruan Z; Liu Z
    Chaos; 2013 Sep; 23(3):033135. PubMed ID: 24089971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landau damping effects in the synchronization of conformist and contrarian oscillators.
    Qiu T; Zhang Y; Liu J; Bi H; Boccaletti S; Liu Z; Guan S
    Sci Rep; 2015 Dec; 5():18235. PubMed ID: 26657060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic synchronization and chimera in conformist and contrarian oscillators.
    Hong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062924. PubMed ID: 25019868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binary mixtures of locally coupled mobile oscillators.
    Paulo G; Tasinkevych M
    Phys Rev E; 2021 Jul; 104(1-1):014204. PubMed ID: 34412317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcations in models of a society of reasonable contrarians and conformists.
    Bagnoli F; Rechtman R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042913. PubMed ID: 26565310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization of oscillators in a Kuramoto-type model with generic coupling.
    Vlasov V; Macau EE; Pikovsky A
    Chaos; 2014 Jun; 24(2):023120. PubMed ID: 24985434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrarians Synchronize beyond the Limit of Pairwise Interactions.
    Kovalenko K; Dai X; Alfaro-Bittner K; Raigorodskii AM; Perc M; Boccaletti S
    Phys Rev Lett; 2021 Dec; 127(25):258301. PubMed ID: 35029445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic correlations in the finite-size Kuramoto model of coupled oscillators.
    Peter F; Gong CC; Pikovsky A
    Phys Rev E; 2019 Sep; 100(3-1):032210. PubMed ID: 31639966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase diagram for the Kuramoto model with van Hemmen interactions.
    Kloumann IM; Lizarraga IM; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012904. PubMed ID: 24580294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators.
    Roberts DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.