These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 21405399)

  • 21. Dynamics of oscillators globally coupled via two mean fields.
    Zhang X; Pikovsky A; Liu Z
    Sci Rep; 2017 May; 7(1):2104. PubMed ID: 28522836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronization of coupled Kuramoto oscillators under resource constraints.
    Kroma-Wiley KA; Mucha PJ; Bassett DS
    Phys Rev E; 2021 Jul; 104(1-1):014211. PubMed ID: 34412254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling.
    Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016212. PubMed ID: 20866712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Matrix coupling and generalized frustration in Kuramoto oscillators.
    Buzanello GL; Barioni AED; de Aguiar MAM
    Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voter models with contrarian agents.
    Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052803. PubMed ID: 24329314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasticity and learning in a network of coupled phase oscillators.
    Seliger P; Young SC; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplicity of singular synchronous states in the Kuramoto model of coupled oscillators.
    Komarov M; Pikovsky A
    Phys Rev Lett; 2013 Nov; 111(20):204101. PubMed ID: 24289688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths.
    Iatsenko D; Petkoski S; McClintock PV; Stefanovska A
    Phys Rev Lett; 2013 Feb; 110(6):064101. PubMed ID: 23432245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model.
    English LQ; Zeng Z; Mertens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symmetry and symmetry breaking in a Kuramoto model induced on a Möbius strip.
    Ren Q; Long Q; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022811. PubMed ID: 23496572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collective dynamics in two populations of noisy oscillators with asymmetric interactions.
    Sonnenschein B; Peron TK; Rodrigues FA; Kurths J; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062910. PubMed ID: 26172775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entrainment transition in populations of random frequency oscillators.
    Hong H; Chaté H; Park H; Tang LH
    Phys Rev Lett; 2007 Nov; 99(18):184101. PubMed ID: 17995410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulus-locked responses of two phase oscillators coupled with delayed feedback.
    Krachkovskyi V; Popovych OV; Tass PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066220. PubMed ID: 16906959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise.
    Gong CC; Zheng C; Toenjes R; Pikovsky A
    Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchronization of electrochemical oscillators with differential coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solvable Dynamics of Coupled High-Dimensional Generalized Limit-Cycle Oscillators.
    Zou W; He S; Senthilkumar DV; Kurths J
    Phys Rev Lett; 2023 Mar; 130(10):107202. PubMed ID: 36962012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.