These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21405514)

  • 1. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10(-15).
    McFerran JJ; Yi L; Mejri S; Di Manno S; Zhang W; Guéna J; Le Coq Y; Bize S
    Phys Rev Lett; 2012 May; 108(18):183004. PubMed ID: 22681071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury.
    Petersen M; Chicireanu R; Dawkins ST; Magalhães DV; Mandache C; Le Coq Y; Clairon A; Bize S
    Phys Rev Lett; 2008 Oct; 101(18):183004. PubMed ID: 18999828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability.
    McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S
    Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime.
    Ido T; Katori H
    Phys Rev Lett; 2003 Aug; 91(5):053001. PubMed ID: 12906592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrow-line Cooling and Determination of the Magic Wavelength of Cd.
    Yamaguchi A; Safronova MS; Gibble K; Katori H
    Phys Rev Lett; 2019 Sep; 123(11):113201. PubMed ID: 31573273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength.
    Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG
    Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping Rydberg atoms in an optical lattice.
    Anderson SE; Younge KC; Raithel G
    Phys Rev Lett; 2011 Dec; 107(26):263001. PubMed ID: 22243153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
    Takamoto M; Katori H
    Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock.
    Brown RC; Phillips NB; Beloy K; McGrew WF; Schioppo M; Fasano RJ; Milani G; Zhang X; Hinkley N; Leopardi H; Yoon TH; Nicolodi D; Fortier TM; Ludlow AD
    Phys Rev Lett; 2017 Dec; 119(25):253001. PubMed ID: 29303326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoionization cross sections of ultracold
    Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M
    Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Doubly magic" conditions in magic-wavelength trapping of ultracold alkali-metal atoms.
    Derevianko A
    Phys Rev Lett; 2010 Jul; 105(3):033002. PubMed ID: 20867762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.
    Liu PL; Huang Y; Bian W; Shao H; Guan H; Tang YB; Li CB; Mitroy J; Gao KL
    Phys Rev Lett; 2015 Jun; 114(22):223001. PubMed ID: 26196619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-dekahertz ultraviolet spectroscopy of 199Hg+.
    Rafac RJ; Young BC; Beall JA; Itano WM; Wineland DJ; Bergquist JC
    Phys Rev Lett; 2000 Sep; 85(12):2462-5. PubMed ID: 10978082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser controlled tunneling in a vertical optical lattice.
    Beaufils Q; Tackmann G; Wang X; Pelle B; Pelisson S; Wolf P; dos Santos FP
    Phys Rev Lett; 2011 May; 106(21):213002. PubMed ID: 21699294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hamiltonian engineering of spin-orbit-coupled fermions in a Wannier-Stark optical lattice clock.
    Aeppli A; Chu A; Bothwell T; Kennedy CJ; Kedar D; He P; Rey AM; Ye J
    Sci Adv; 2022 Oct; 8(41):eadc9242. PubMed ID: 36223457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.