These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 21405619)

  • 1. Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional.
    Hesselmann A; Görling A
    Phys Rev Lett; 2011 Mar; 106(9):093001. PubMed ID: 21405619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.
    Bleiziffer P; Schmidtel D; Görling A
    J Chem Phys; 2014 Nov; 141(20):204107. PubMed ID: 25429933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.
    Bates JE; Mezei PD; Csonka GI; Sun J; Ruzsinszky A
    J Chem Theory Comput; 2017 Jan; 13(1):100-109. PubMed ID: 27996258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Describing static correlation in bond dissociation by Kohn-Sham density functional theory.
    Fuchs M; Niquet YM; Gonze X; Burke K
    J Chem Phys; 2005 Mar; 122(9):094116. PubMed ID: 15836121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A first-principles study of weakly bound molecules using exact exchange and the random phase approximation.
    Nguyen HV; Galli G
    J Chem Phys; 2010 Jan; 132(4):044109. PubMed ID: 20113021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static correlation beyond the random phase approximation: dissociating H2 with the Bethe-Salpeter equation and time-dependent GW.
    Olsen T; Thygesen KS
    J Chem Phys; 2014 Apr; 140(16):164116. PubMed ID: 24784262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid functionals including random phase approximation correlation and second-order screened exchange.
    Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G
    J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real versus artifactual symmetry-breaking effects in Hartree-Fock, density-functional, and coupled-cluster methods.
    Russ NJ; Crawford TD; Tschumper GS
    J Chem Phys; 2004 Apr; 120(16):7298-306. PubMed ID: 15267639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The flexible nature of exchange, correlation, and Hartree physics: resolving "delocalization" errors in a "correlation free" density functional.
    Gould T; Dobson JF
    J Chem Phys; 2013 Jan; 138(1):014103. PubMed ID: 23298024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations.
    Goel S; Masunov AE
    J Chem Phys; 2008 Dec; 129(21):214302. PubMed ID: 19063556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves.
    Ess DH; Cook TC
    J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directly patching high-level exchange-correlation potential based on fully determined optimized effective potentials.
    Huang C; Chi YC
    J Chem Phys; 2017 Dec; 147(24):244111. PubMed ID: 29289130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functionals for inorganometallic and organometallic chemistry.
    Schultz NE; Zhao Y; Truhlar DG
    J Phys Chem A; 2005 Dec; 109(49):11127-43. PubMed ID: 16331896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuation-dissipation theorem density-functional theory.
    Furche F; Van Voorhis T
    J Chem Phys; 2005 Apr; 122(16):164106. PubMed ID: 15945671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Van der waals interactions in molecular assemblies from first-principles calculations.
    Li Y; Lu D; Nguyen HV; Galli G
    J Phys Chem A; 2010 Feb; 114(4):1944-52. PubMed ID: 20043660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation.
    Hellgren M; Rohr DR; Gross EK
    J Chem Phys; 2012 Jan; 136(3):034106. PubMed ID: 22280743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.