These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21405643)

  • 1. Direct observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field.
    Jhang SH; Margańska M; Skourski Y; Preusche D; Grifoni M; Wosnitza J; Strunk C
    Phys Rev Lett; 2011 Mar; 106(9):096802. PubMed ID: 21405643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoconductance of carbon nanotube p-n junctions.
    Andreev AV
    Phys Rev Lett; 2007 Dec; 99(24):247204. PubMed ID: 18233479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of electron orbital magnetic moments in carbon nanotubes.
    Minot ED; Yaish Y; Sazonova V; McEuen PL
    Nature; 2004 Apr; 428(6982):536-9. PubMed ID: 15057825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic properties of oxidized carbon nanotubes.
    Jhi SH; Louie SG; Cohen ML
    Phys Rev Lett; 2000 Aug; 85(8):1710-3. PubMed ID: 10970595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning carbon nanotube band gaps with strain.
    Minot ED; Yaish Y; Sazonova V; Park JY; Brink M; McEuen PL
    Phys Rev Lett; 2003 Apr; 90(15):156401. PubMed ID: 12732057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.
    Shaver J; Parra-Vasquez AN; Hansel S; Portugall O; Mielke CH; von Ortenberg M; Hauge RH; Pasquali M; Kono J
    ACS Nano; 2009 Jan; 3(1):131-8. PubMed ID: 19206259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paired gap states in a semiconducting carbon nanotube: deep and shallow levels.
    Lee S; Kim G; Kim H; Choi BY; Lee J; Jeong BW; Ihm J; Kuk Y; Kahng SJ
    Phys Rev Lett; 2005 Oct; 95(16):166402. PubMed ID: 16241824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic and extrinsic effects in the temperature-dependent photoluminescence of semiconducting carbon nanotubes.
    Karaiskaj D; Engtrakul C; McDonald T; Heben MJ; Mascarenhas A
    Phys Rev Lett; 2006 Mar; 96(10):106805. PubMed ID: 16605775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching.
    Cao J; Wang Q; Dai H
    Phys Rev Lett; 2003 Apr; 90(15):157601. PubMed ID: 12732069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagative Landau states and Fermi level pinning in carbon nanotubes.
    Nanot S; Avriller R; Escoffier W; Broto JM; Roche S; Raquet B
    Phys Rev Lett; 2009 Dec; 103(25):256801. PubMed ID: 20366272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of band structure on quantum interference in multiwall carbon nanotubes.
    Stojetz B; Miko C; Forró L; Strunk C
    Phys Rev Lett; 2005 May; 94(18):186802. PubMed ID: 15904392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant modulation of the electronic band gap of carbon nanotubes by dielectric screening.
    Aspitarte L; McCulley DR; Bertoni A; Island JO; Ostermann M; Rontani M; Steele GA; Minot ED
    Sci Rep; 2017 Aug; 7(1):8828. PubMed ID: 28821825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron nitride nanotubes and nanosheets.
    Golberg D; Bando Y; Huang Y; Terao T; Mitome M; Tang C; Zhi C
    ACS Nano; 2010 Jun; 4(6):2979-93. PubMed ID: 20462272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large anisotropy in the magnetic susceptibility of metallic carbon nanotubes.
    Searles TA; Imanaka Y; Takamasu T; Ajiki H; Fagan JA; Hobbie EK; Kono J
    Phys Rev Lett; 2010 Jul; 105(1):017403. PubMed ID: 20867476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors.
    Jang HK; Jin JE; Choi JH; Kang PS; Kim DH; Kim GT
    Phys Chem Chem Phys; 2015 Mar; 17(10):6874-80. PubMed ID: 25673219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric magnetoconductance and magneto-Coulomb effect in a carbon nanotube single electron transistor.
    Lee JS; Park JW; Song JY; Kim J
    Nanotechnology; 2013 May; 24(19):195201. PubMed ID: 23579569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonochemical growth of antimony sulfoiodide in multiwalled carbon nanotube.
    Nowak M; Jesionek M; Szperlich P; Szala J; Rzychoń T; Stróz D
    Ultrason Sonochem; 2009 Aug; 16(6):800-4. PubMed ID: 19375373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.