These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 21405692)

  • 21. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electro-osmosis of electrorheological fluids.
    Dhar J; Bandopadhyay A; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053001. PubMed ID: 24329345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling and analysis of electrorheological suspensions in shear flow.
    Seo YP; Seo Y
    Langmuir; 2012 Feb; 28(6):3077-84. PubMed ID: 22233263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfibrillated Cellulose Suspension and Its Electrorheology.
    Choi K; Nam JD; Kwon SH; Choi HJ; Islam MS; Kao N
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31861094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shear-induced particle rotation and its effect on electrorheological and dielectric properties in cellulose suspension.
    Misono Y; Negita K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061412. PubMed ID: 15697367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern formation in flowing electrorheological fluids.
    von Pfeil K; Graham MD; Klingenberg DJ; Morris JF
    Phys Rev Lett; 2002 May; 88(18):188301. PubMed ID: 12005727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.
    Cho CC; Chen CL; Chen CK
    Electrophoresis; 2012 Mar; 33(5):743-50. PubMed ID: 22522530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field.
    Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrorheological phenomena in polyhedral silsesquioxane cage structure/PDMS systems.
    Carl McIntyre E; Joon Oh H; Green PF
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):965-8. PubMed ID: 20384359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrorheological fluid dynamics.
    Zhang J; Gong X; Liu C; Wen W; Sheng P
    Phys Rev Lett; 2008 Nov; 101(19):194503. PubMed ID: 19113272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generalized yield stress equation for electrorheological fluids.
    Zhang K; Liu YD; Jhon MS; Choi HJ
    J Colloid Interface Sci; 2013 Nov; 409():259-63. PubMed ID: 23993784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.
    Antony SJ; Kruyt NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrokinetics of non-Newtonian fluids: a review.
    Zhao C; Yang C
    Adv Colloid Interface Sci; 2013 Dec; 201-202():94-108. PubMed ID: 24148843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles.
    Zheng C; Lei Q; Zhao J; Zhao X; Yin J
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32235757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generality of shear thickening in dense suspensions.
    Brown E; Forman NA; Orellana CS; Zhang H; Maynor BW; Betts DE; DeSimone JM; Jaeger HM
    Nat Mater; 2010 Mar; 9(3):220-4. PubMed ID: 20118945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields.
    Kwon SH; Liu YD; Choi HJ
    J Colloid Interface Sci; 2015 Feb; 440():9-15. PubMed ID: 25460683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boundary effect in electrorheological fluids.
    Gong XL; Yang F; Xuan SH; Zong LH; Zhu W; Jiang WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061505. PubMed ID: 22304095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear thickening in granular suspensions: interparticle friction and dynamically correlated clusters.
    Heussinger C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):050201. PubMed ID: 24329197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First observation of electrorheological plasmas.
    Ivlev AV; Morfill GE; Thomas HM; Räth C; Joyce G; Huber P; Kompaneets R; Fortov VE; Lipaev AM; Molotkov VI; Reiter T; Turin M; Vinogradov P
    Phys Rev Lett; 2008 Mar; 100(9):095003. PubMed ID: 18352717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.