These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21405721)

  • 21. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.
    Herhut M; Brandenbusch C; Sadowski G
    Biotechnol J; 2016 Jan; 11(1):146-54. PubMed ID: 26250594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein phase behavior and crystallization: effect of glycerol.
    Sedgwick H; Cameron JE; Poon WC; Egelhaaf SU
    J Chem Phys; 2007 Sep; 127(12):125102. PubMed ID: 17902938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific ion effects at protein surfaces: a molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish peroxidase in selected salt solutions.
    Vrbka L; Jungwirth P; Bauduin P; Touraud D; Kunz W
    J Phys Chem B; 2006 Apr; 110(13):7036-43. PubMed ID: 16571019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leap-dynamics: efficient sampling of conformational space of proteins and peptides in solution.
    Kleinjung J; Bayley P; Fraternali F
    FEBS Lett; 2000 Mar; 470(3):257-62. PubMed ID: 10745078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases.
    Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M
    Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of salts and organic additives on the solubility of proteins in aqueous solutions.
    Ruckenstein E; Shulgin IL
    Adv Colloid Interface Sci; 2006 Nov; 123-126():97-103. PubMed ID: 16814736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation between the osmotic second virial coefficient and the solubility of proteins.
    Ruppert S; Sandler SI; Lenhoff AM
    Biotechnol Prog; 2001; 17(1):182-7. PubMed ID: 11170497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein aggregation in salt solutions.
    Kastelic M; Kalyuzhnyi YV; Hribar-Lee B; Dill KA; Vlachy V
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6766-70. PubMed ID: 25964322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The accurate measurement of second virial coefficients using self-interaction chromatography: experimental considerations.
    Quigley A; Heng JY; Liddell JM; Williams DR
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1103-11. PubMed ID: 23623796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of protein-protein association energies by free energy perturbation calculations.
    Brandsdal BO; Smalås AO
    Protein Eng; 2000 Apr; 13(4):239-45. PubMed ID: 10810154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculation of Second Virial Coefficients of Atomistic Proteins Using Fast Fourier Transform.
    Qin S; Zhou HX
    J Phys Chem B; 2019 Oct; 123(39):8203-8215. PubMed ID: 31490691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phi-values for BPTI folding intermediates and implications for transition state analysis.
    Bulaj G; Goldenberg DP
    Nat Struct Biol; 2001 Apr; 8(4):326-30. PubMed ID: 11276252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a molecular switch that selects between two crystals forms of bovine pancreatic trypsin inhibitor.
    Gallagher WH; Croker KM
    Protein Sci; 1994 Sep; 3(9):1602-4. PubMed ID: 7530544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems.
    McGuffee SR; Elcock AH
    J Am Chem Soc; 2006 Sep; 128(37):12098-110. PubMed ID: 16967959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Second Virial Coefficient As Determined from Protein Phase Behavior.
    Platten F; Hansen J; Wagner D; Egelhaaf SU
    J Phys Chem Lett; 2016 Oct; 7(19):4008-4014. PubMed ID: 27662500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophobic interaction chromatography of proteins. II. Solution thermodynamic properties as a determinant of retention.
    To BC; Lenhoff AM
    J Chromatogr A; 2007 Feb; 1141(2):235-43. PubMed ID: 17207494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.
    Mehta CM; White ET; Litster JD
    Biotechnol Prog; 2013; 29(5):1203-11. PubMed ID: 23804362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.
    Le Brun V; Friess W; Schultz-Fademrecht T; Muehlau S; Garidel P
    Biotechnol J; 2009 Sep; 4(9):1305-19. PubMed ID: 19579219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.
    Winzor DJ; Deszczynski M; Harding SE; Wills PR
    Biophys Chem; 2007 Jun; 128(1):46-55. PubMed ID: 17382457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of osmotic pressure data for aqueous protein solutions via a multicomponent model.
    Druchok M; Kalyuzhnyi Y; Rescic J; Vlachy V
    J Chem Phys; 2006 Mar; 124(11):114902. PubMed ID: 16555916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.