These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantum phase transition in the Frenkel-Kontorova chain: from pinned instanton glass to sliding phonon gas. Zhirov OV; Casati G; Shepelyansky DL Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056209. PubMed ID: 12786252 [TBL] [Abstract][Full Text] [Related]
3. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics. Kosevich YA; Manevitch LI; Savin AV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746 [TBL] [Abstract][Full Text] [Related]
4. Dissipative quantum chaos: transition from wave packet collapse to explosion. Carlo GG; Benenti G; Shepelyansky DL Phys Rev Lett; 2005 Oct; 95(16):164101. PubMed ID: 16241802 [TBL] [Abstract][Full Text] [Related]
5. Quantized breather excitations of Fermi-Pasta-Ulam lattices. Riseborough PS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011129. PubMed ID: 22400534 [TBL] [Abstract][Full Text] [Related]
6. Classical nonlinearity and quantum decay: the effect of classical phase-space structures. Ashkenazy Y; Bonci L; Levitan J; Roncaglia R Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056215. PubMed ID: 11736062 [TBL] [Abstract][Full Text] [Related]
7. Decoherence, entanglement decay, and equilibration produced by chaotic environments. Lemos GB; Toscano F Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016220. PubMed ID: 21867286 [TBL] [Abstract][Full Text] [Related]
8. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice. Zhang Z; Koroleva I; Manevitch LI; Bergman LA; Vakakis AF Phys Rev E; 2016 Sep; 94(3-1):032214. PubMed ID: 27739799 [TBL] [Abstract][Full Text] [Related]
9. Compactons and chaos in strongly nonlinear lattices. Ahnert K; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026209. PubMed ID: 19391822 [TBL] [Abstract][Full Text] [Related]
10. Classical nonlinear response of a chaotic system. I. Collective resonances. Malinin SV; Chernyak VY Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056201. PubMed ID: 18643136 [TBL] [Abstract][Full Text] [Related]
11. Relativistic laser-plasma interactions in the quantum regime. Eliasson B; Shukla PK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046407. PubMed ID: 21599316 [TBL] [Abstract][Full Text] [Related]
12. Pattern dynamics and spatiotemporal chaos in the quantum Zakharov equations. Misra AP; Shukla PK Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056401. PubMed ID: 19518570 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear excitations of magnetosonic solitary waves and their chaotic behavior in spin-polarized degenerate quantum magnetoplasma. Rahim Z; Adnan M; Qamar A Chaos; 2021 Feb; 31(2):023133. PubMed ID: 33653042 [TBL] [Abstract][Full Text] [Related]
14. Bistability and chaos at low levels of quanta. Gevorgyan TV; Shahinyan AR; Chew LY; Kryuchkyan GY Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022910. PubMed ID: 24032904 [TBL] [Abstract][Full Text] [Related]
15. Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas. Banerjee S; Misra AP; Shukla PK; Rondoni L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046405. PubMed ID: 20481845 [TBL] [Abstract][Full Text] [Related]
16. Scarred patterns in surface waves. Kudrolli A; Abraham MC; Gollub JP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026208. PubMed ID: 11308559 [TBL] [Abstract][Full Text] [Related]
17. Superdiffusive transport and energy localization in disordered granular crystals. Martínez AJ; Kevrekidis PG; Porter MA Phys Rev E; 2016 Feb; 93(2):022902. PubMed ID: 26986394 [TBL] [Abstract][Full Text] [Related]
18. Signatures of chaos in time series generated by many-spin systems at high temperatures. Elsayed TA; Hess B; Fine BV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022910. PubMed ID: 25215802 [TBL] [Abstract][Full Text] [Related]
19. Quasi-integrable systems are slow to thermalize but may be good scramblers. Goldfriend T; Kurchan J Phys Rev E; 2020 Aug; 102(2-1):022201. PubMed ID: 32942492 [TBL] [Abstract][Full Text] [Related]
20. Strongly nonlinear wave dynamics in a chain of polymer coated beads. Daraio C; Nesterenko VF Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026612. PubMed ID: 16605476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]