These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21405768)

  • 1. Experiments and Lagrangian simulations on the formation of droplets in continuous mode.
    Castrejón-Pita JR; Morrison NF; Harlen OG; Martin GD; Hutchings IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016301. PubMed ID: 21405768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode.
    Castrejón-Pita JR; Morrison NF; Harlen OG; Martin GD; Hutchings IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036306. PubMed ID: 21517586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.
    Umemura A; Kawanabe S; Suzuki S; Osaka J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036309. PubMed ID: 22060494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments.
    Luedtke WD; Landman U; Chiu YH; Levandier DJ; Dressler RA; Sok S; Gordon MS
    J Phys Chem A; 2008 Oct; 112(40):9628-49. PubMed ID: 18828572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle.
    Umemura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046307. PubMed ID: 21599295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of the Micro-Jet Formation in Double Flow Focusing Nozzle Geometry Using Different Water-Alcohol Solutions.
    Belšak G; Bajt S; Šarler B
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of electrostatically driven jets from nonviscous droplets.
    Garzon M; Gray LJ; Sethian JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033011. PubMed ID: 24730941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled production of droplets by in-flight electrospraying.
    Kim OV; Dunn PF
    Langmuir; 2010 Oct; 26(20):15807-13. PubMed ID: 20839855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of ultrasound to enhance high-speed water jet effects.
    Foldyna J; Sitek L; Svehla B; Svehla S
    Ultrason Sonochem; 2004 May; 11(3-4):131-7. PubMed ID: 15081969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spraying mode effect on droplet formation and ion chemistry in electrosprays.
    Nemes P; Marginean I; Vertes A
    Anal Chem; 2007 Apr; 79(8):3105-16. PubMed ID: 17378541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size, velocity, and concentration in suspension measurements of spherical droplets and cylindrical jets.
    Onofri F; Bergougnoux L; Firpo JL; Misguich-Ripault J
    Appl Opt; 1999 Jul; 38(21):4681-90. PubMed ID: 18323955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous measurement of acoustic and streaming velocities in a standing wave using laser Doppler anemometry.
    Thompson MW; Atchley AA
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1828-38. PubMed ID: 15898628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental application of pulsed Ho:YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device.
    Ohki T; Nakagawa A; Hirano T; Hashimoto T; Menezes V; Jokura H; Uenohara H; Sato Y; Saito T; Shirane R; Tominaga T; Takayama K
    Lasers Surg Med; 2004; 34(3):227-34. PubMed ID: 15022249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jet flow in steadily swimming adult squid.
    Anderson EJ; Grosenbaugh MA
    J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nozzle geometry on the dynamics and mixing of self-similar turbulent jets.
    Nejatipour P; Khorsandi B
    Water Sci Technol; 2021 Dec; 84(12):3907-3915. PubMed ID: 34928851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impinging laminar jets at moderate Reynolds numbers and separation distances.
    Bergthorson JM; Sone K; Mattner TW; Dimotakis PE; Goodwin DG; Meiron DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066307. PubMed ID: 16486059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics.
    Biver E; Rapp L; Alloncle AP; Serra P; Delaporte P
    Opt Express; 2014 Jul; 22(14):17122-34. PubMed ID: 25090527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disintegration of diminutive liquid helium jets in vacuum.
    Tanyag RMP; Feinberg AJ; O'Connell SMO; Vilesov AF
    J Chem Phys; 2020 Jun; 152(23):234306. PubMed ID: 32571041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields.
    Grimm RL; Beauchamp JL
    J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple large-scale droplet generator for studies of inkjet printing.
    Castrejón-Pita JR; Martin GD; Hoath SD; Hutchings IM
    Rev Sci Instrum; 2008 Jul; 79(7):075108. PubMed ID: 18681735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.