BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21405872)

  • 1. Mathematical model for contemplative amoeboid locomotion.
    Ueda K; Takagi S; Nishiura Y; Nakagaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021916. PubMed ID: 21405872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotive mechanism of Physarum plasmodia based on spatiotemporal analysis of protoplasmic streaming.
    Matsumoto K; Takagi S; Nakagaki T
    Biophys J; 2008 Apr; 94(7):2492-504. PubMed ID: 18065474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-network adaptation in Physarum amoebae.
    Tero A; Yumiki K; Kobayashi R; Saigusa T; Nakagaki T
    Theory Biosci; 2008 Jun; 127(2):89-94. PubMed ID: 18415133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuum model of contraction waves and protoplasm streaming in strands of Physarum plasmodium.
    Teplov VA; Romanovsky YuM ; Latushkin OA
    Biosystems; 1991; 24(4):269-89. PubMed ID: 1863716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for period-memorizing behavior in Physarum plasmodium.
    Tachikawa M
    J Theor Biol; 2010 Apr; 263(4):449-54. PubMed ID: 20064531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase switching of oscillatory contraction in relation to the regulation of amoeboid behavior by the plasmodium of Physarum polycephalum.
    Nakagaki T; Ueda T
    J Theor Biol; 1996 Apr; 179(3):261-7. PubMed ID: 8762336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Synchronization of mechanochemical auto-oscillations within the Physarum polycephalum plasmodium by periodical external actions].
    Teplov VA; Mitrofanov VV; Romanovskiĭ IuM
    Biofizika; 2005; 50(4):704-12. PubMed ID: 16212064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of network formation by Physarum plasmodium: interplay between cell mobility and morphogenesis.
    Niizato T; Shirakawa T; Gunji YP
    Biosystems; 2010 May; 100(2):108-12. PubMed ID: 20170709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model for adaptive transport network in path finding by true slime mold.
    Tero A; Kobayashi R; Nakagaki T
    J Theor Biol; 2007 Feb; 244(4):553-64. PubMed ID: 17069858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of contractility, adhesion and flow in migrating Physarum amoebae.
    Lewis OL; Zhang S; Guy RD; del Álamo JC
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model for rhythmic protoplasmic movement in the true slime mold.
    Kobayashi R; Tero A; Nakagaki T
    J Math Biol; 2006 Aug; 53(2):273-86. PubMed ID: 16770610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns in the distribution of intracellular ATP concentration in relation to coordination of amoeboid cell behavior in Physarum polycephalum.
    Ueda T; Mori Y; Kobatake Y
    Exp Cell Res; 1987 Mar; 169(1):191-201. PubMed ID: 3817013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactic direction determined by the interaction between oscillatory chemical waves and rheological deformation in an amoeba.
    Ueda K; Takagi S; Nakagaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011927. PubMed ID: 23005472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between electric potential and peristaltic behavior in Physarum polycephalum.
    Zheng Y; Jia R; Qian Y; Ye Y; Liu C
    Biosystems; 2015 Jun; 132-133():13-9. PubMed ID: 25892288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillations in cell shape and size during locomotion and in contractile activities of Physarum polycephalum, Dictyostelium discoideum, Amoeba proteus and macrophages.
    Satoh H; Ueda T; Kobatake Y
    Exp Cell Res; 1985 Jan; 156(1):79-90. PubMed ID: 3965294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical models of pseudopod formation.
    Skalak R; Skierczynski BA; Wung SL; Chien S; Usami S
    Blood Cells; 1993; 19(2):389-97; discussion 398-9. PubMed ID: 8312571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lumped parameter model of endoplasm flow in Physarum polycephalum explains migration and polarization-induced asymmetry during the onset of locomotion.
    Oettmeier C; Döbereiner HG
    PLoS One; 2019; 14(4):e0215622. PubMed ID: 31013306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics.
    Iwayama K; Zhu L; Hirata Y; Aono M; Hara M; Aihara K
    Bioinspir Biomim; 2016 Apr; 11(3):036001. PubMed ID: 27070463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between cell shape and contraction pattern in the Physarum plasmodium.
    Nakagaki T; Yamada H; Ueda T
    Biophys Chem; 2000 May; 84(3):195-204. PubMed ID: 10852307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amoeba-based computing for traveling salesman problem: long-term correlations between spatially separated individual cells of Physarum polycephalum.
    Zhu L; Aono M; Kim SJ; Hara M
    Biosystems; 2013 Apr; 112(1):1-10. PubMed ID: 23438635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.