BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21405872)

  • 21. Non-Brownian dynamics and strategy of amoeboid cell locomotion.
    Nishimura SI; Ueda M; Sasai M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041909. PubMed ID: 22680500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-organized mechano-chemical dynamics in amoeboid locomotion of
    Zhang S; Guy RD; Lasheras JC; Del Álamo JC
    J Phys D Appl Phys; 2017 May; 50(20):. PubMed ID: 30906070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertia of amoebic cell locomotion as an emergent collective property of the cellular dynamics.
    Nishimura SI; Sasai M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):010902. PubMed ID: 15697573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic organization of ATP and birefringent fibrils during free locomotion and galvanotaxis in the plasmodium of Physarum polycephalum.
    Ueda T; Nakagaki T; Yamada T
    J Cell Biol; 1990 Apr; 110(4):1097-102. PubMed ID: 2324194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active poroelastic two-phase model for the motion of physarum microplasmodia.
    Kulawiak DA; Löber J; Bär M; Engel H
    PLoS One; 2019; 14(8):e0217447. PubMed ID: 31398215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Mathematical model of protoplasm flow in a viscous-elastic active strand of a myxomycete plasmodium].
    Vorob'ev MM; Priezzhev AV; Romanovskiĭ IuM
    Biofizika; 1980; 25(3):515-9. PubMed ID: 7397265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum.
    Jones J; Adamatzky A
    Bioinspir Biomim; 2012 Mar; 7(1):016009. PubMed ID: 22278961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Cytomechanics of oscillatory contractions. Modeling the longitudinal dynamics of Physarum polycephalum protoplasmic strands].
    Teplov VA
    Biofizika; 2010; 55(6):1083-93. PubMed ID: 21268354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodynamics of self-propelled hard rods.
    Baskaran A; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011920. PubMed ID: 18351889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reaction-diffusion-advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the physarum plasmodium.
    Nakagaki T; Yamada H; Ito M
    J Theor Biol; 1999 Apr; 197(4):497-506. PubMed ID: 10196092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Involvement of extracellular cAMP-specific phosphodiesterase in control of motile activity of Physarum polycephalum plasmodium].
    Matveeva NB; Morozov MA; Nezvetskiĭ AR; Orlova TG; Teplov VA; Beĭlina SI
    Biofizika; 2010; 55(6):1076-82. PubMed ID: 21268353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully decentralized control of a soft-bodied robot inspired by true slime mold.
    Umedachi T; Takeda K; Nakagaki T; Kobayashi R; Ishiguro A
    Biol Cybern; 2010 Mar; 102(3):261-9. PubMed ID: 20204398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of microinjected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization in Amoeba proteus and Physarum polycephalum.
    Stockem W; Weber K; Wehland J
    Cytobiologie; 1978 Oct; 18(1):114-31. PubMed ID: 710672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classifying general nonlinear force laws in cell-based models via the continuum limit.
    Murray PJ; Edwards CM; Tindall MJ; Maini PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021921. PubMed ID: 22463258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissection of amoeboid movement into two mechanically distinct modes.
    Yoshida K; Soldati T
    J Cell Sci; 2006 Sep; 119(Pt 18):3833-44. PubMed ID: 16926192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An adaptive and robust biological network based on the vacant-particle transportation model.
    Gunji YP; Shirakawa T; Niizato T; Yamachiyo M; Tani I
    J Theor Biol; 2011 Mar; 272(1):187-200. PubMed ID: 21163269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assembly, disassembly, and movements of the microfilament-rich ridge during the amoeboflagellate transformation in Physarum polycephalum.
    Pagh KI; Adelman MR
    Cell Motil Cytoskeleton; 1988; 11(4):223-34. PubMed ID: 3219731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allometry in Physarum plasmodium during free locomotion: size versus shape, speed and rhythm.
    Kuroda S; Takagi S; Nakagaki T; Ueda T
    J Exp Biol; 2015 Dec; 218(Pt 23):3729-38. PubMed ID: 26449972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmalemma invaginations, contraction and locomotion in normal and caffeine-treated protoplasmic drops of Physarum.
    Achenbach F; Achenbach U; Wohlfarth-Bottermann KE
    Eur J Cell Biol; 1979 Oct; 20(1):12-23. PubMed ID: 520328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells.
    Ryan GL; Watanabe N; Vavylonis D
    Cytoskeleton (Hoboken); 2012 Apr; 69(4):195-206. PubMed ID: 22354870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.