These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21405872)

  • 61. On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot.
    Sato T; Kano T; Ishiguro A
    Bioinspir Biomim; 2011 Jun; 6(2):026006. PubMed ID: 21502703
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Coarse-grained modeling and simulation of actin filament behavior based on Brownian dynamics method.
    Shimada Y; Adachi T; Inoue Y; Hojo M
    Mol Cell Biomech; 2009 Sep; 6(3):161-73. PubMed ID: 19670826
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Toxoplasma as a novel system for motility.
    Soldati D; Meissner M
    Curr Opin Cell Biol; 2004 Feb; 16(1):32-40. PubMed ID: 15037302
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Retraction in amoeboid cell motility powered by cytoskeletal dynamics.
    Miao L; Vanderlinde O; Stewart M; Roberts TM
    Science; 2003 Nov; 302(5649):1405-7. PubMed ID: 14631043
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reconstruction of active regular motion in amoeba extract: dynamic cooperation between sol and gel states.
    Nishigami Y; Ichikawa M; Kazama T; Kobayashi R; Shimmen T; Yoshikawa K; Sonobe S
    PLoS One; 2013; 8(8):e70317. PubMed ID: 23940560
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Persistent random deformation model of cells crawling on a gel surface.
    Ebata H; Yamamoto A; Tsuji Y; Sasaki S; Moriyama K; Kuboki T; Kidoaki S
    Sci Rep; 2018 Mar; 8(1):5153. PubMed ID: 29581462
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerence.
    Ueda T; Koya S; Maruyama YK
    Biosystems; 1999 Dec; 54(1-2):65-70. PubMed ID: 10658838
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Remarkable problem-solving ability of unicellular amoeboid organism and its mechanism.
    Zhu L; Kim SJ; Hara M; Aono M
    R Soc Open Sci; 2018 Dec; 5(12):180396. PubMed ID: 30662714
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium.
    Nakagaki T; Yamada H; Ueda T
    Biophys Chem; 1999 Nov; 82(1):23-8. PubMed ID: 17030338
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Growth dynamics of Bacillus circulans colony.
    Komoto A; Hanaki K; Maenosono S; Wakano JY; Yamaguchi Y; Yamamoto K
    J Theor Biol; 2003 Nov; 225(1):91-7. PubMed ID: 14559062
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Self-organization in amoeboid motility.
    Callan-Jones A
    Front Cell Dev Biol; 2022; 10():1000071. PubMed ID: 36313569
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Substrate composition directs slime molds behavior.
    Patino-Ramirez F; Boussard A; Arson C; Dussutour A
    Sci Rep; 2019 Oct; 9(1):15444. PubMed ID: 31659267
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Habituation in non-neural organisms: evidence from slime moulds.
    Boisseau RP; Vogel D; Dussutour A
    Proc Biol Sci; 2016 Apr; 283(1829):. PubMed ID: 27122563
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Patterns of cell thickness oscillations during directional migration of Physarum polycephalum.
    Rodiek B; Takagi S; Ueda T; Hauser MJ
    Eur Biophys J; 2015 Jul; 44(5):349-58. PubMed ID: 25921614
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum.
    Radszuweit M; Engel H; Bär M
    PLoS One; 2014; 9(6):e99220. PubMed ID: 24927427
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mathematical model for contemplative amoeboid locomotion.
    Ueda K; Takagi S; Nishiura Y; Nakagaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021916. PubMed ID: 21405872
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Locomotive mechanism of Physarum plasmodia based on spatiotemporal analysis of protoplasmic streaming.
    Matsumoto K; Takagi S; Nakagaki T
    Biophys J; 2008 Apr; 94(7):2492-504. PubMed ID: 18065474
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Flow-network adaptation in Physarum amoebae.
    Tero A; Yumiki K; Kobayashi R; Saigusa T; Nakagaki T
    Theory Biosci; 2008 Jun; 127(2):89-94. PubMed ID: 18415133
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A continuum model of contraction waves and protoplasm streaming in strands of Physarum plasmodium.
    Teplov VA; Romanovsky YuM ; Latushkin OA
    Biosystems; 1991; 24(4):269-89. PubMed ID: 1863716
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanical models of pseudopod formation.
    Skalak R; Skierczynski BA; Wung SL; Chien S; Usami S
    Blood Cells; 1993; 19(2):389-97; discussion 398-9. PubMed ID: 8312571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.