These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21405880)

  • 1. Scaling properties of weak chaos in nonlinear disordered lattices.
    Pikovsky A; Fishman S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):025201. PubMed ID: 21405880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices.
    Many Manda B; Senyange B; Skokos C
    Phys Rev E; 2020 Mar; 101(3-1):032206. PubMed ID: 32289935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization-delocalization transition and subdiffusion of discrete nonlinear Schrödinger equation in three dimensions.
    Terao T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056611. PubMed ID: 21728686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrödinger chain in the regime of homogeneous chaos.
    Basko DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022921. PubMed ID: 25353559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling of energy spreading in strongly nonlinear disordered lattices.
    Mulansky M; Ahnert K; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026205. PubMed ID: 21405894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings.
    Heiligenthal S; Jüngling T; D'Huys O; Arroyo-Almanza DA; Soriano MC; Fischer I; Kanter I; Kinzel W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012902. PubMed ID: 23944533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme events in discrete nonlinear lattices.
    Maluckov A; Hadzievski Lj; Lazarides N; Tsironis GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):025601. PubMed ID: 19391797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling properties of energy spreading in nonlinear Hamiltonian two-dimensional lattices.
    Mulansky M; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056214. PubMed ID: 23214864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soliton theory of two-dimensional lattices: the discrete nonlinear schrödinger equation.
    Arévalo E
    Phys Rev Lett; 2009 Jun; 102(22):224102. PubMed ID: 19658867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compactons in nonlinear Schrödinger lattices with strong nonlinearity management.
    Abdullaev FKh; Kevrekidis PG; Salerno M
    Phys Rev Lett; 2010 Sep; 105(11):113901. PubMed ID: 20867574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling of chaos in strongly nonlinear lattices.
    Mulansky M
    Chaos; 2014 Jun; 24(2):024401. PubMed ID: 24985455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local nature and scaling of chaos in weakly nonlinear disordered chains.
    Basko DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036202. PubMed ID: 23030992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subdiffusive Lévy flights in quantum nonlinear Schrödinger lattices with algebraic power nonlinearity.
    Milovanov AV; Iomin A
    Phys Rev E; 2019 May; 99(5-1):052223. PubMed ID: 31212575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical chaos in nonlinear Schrödinger models with subquadratic power nonlinearity.
    Milovanov AV; Iomin A
    Phys Rev E; 2023 Mar; 107(3-1):034203. PubMed ID: 37073010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological approximation of the nonlinear Anderson model.
    Milovanov AV; Iomin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062921. PubMed ID: 25019865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient time-series detection of the strong stochasticity threshold in Fermi-Pasta-Ulam oscillator lattices.
    Romero-Bastida M; Reyes-Martínez AY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016213. PubMed ID: 21405766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaos in the Hamiltonian mean-field model.
    Ginelli F; Takeuchi KA; Chaté H; Politi A; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066211. PubMed ID: 22304182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong and weak chaos in nonlinear networks with time-delayed couplings.
    Heiligenthal S; Dahms T; Yanchuk S; Jüngling T; Flunkert V; Kanter I; Schöll E; Kinzel W
    Phys Rev Lett; 2011 Dec; 107(23):234102. PubMed ID: 22182092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymptotic localization of stationary states in the nonlinear Schrödinger equation.
    Fishman S; Iomin A; Mallick K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066605. PubMed ID: 19256966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.