These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 21405880)
21. Hydrodynamic Lyapunov modes and strong stochasticity threshold in Fermi-Pasta-Ulam models. Yang HL; Radons G Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066201. PubMed ID: 16906940 [TBL] [Abstract][Full Text] [Related]
22. Generalized Lyapunov exponent for the one-dimensional Schrödinger equation with Cauchy disorder: Some exact results. Comtet A; Texier C; Tourigny Y Phys Rev E; 2022 Jun; 105(6-1):064210. PubMed ID: 35854565 [TBL] [Abstract][Full Text] [Related]
23. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
24. Nonlinear Schrödinger equation with random Gaussian input: distribution of inverse scattering data and eigenvalues. Kazakopoulos P; Moustakas AL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016603. PubMed ID: 18764070 [TBL] [Abstract][Full Text] [Related]
25. Generalized Pesin-Like Identity and Scaling Relations at the Chaos Threshold of the Rössler System. Cetin K; Afsar O; Tirnakli U Entropy (Basel); 2018 Mar; 20(4):. PubMed ID: 33265307 [TBL] [Abstract][Full Text] [Related]
26. Weak and strong chaos in Fermi-Pasta-Ulam models and beyond. Pettini M; Casetti L; Cerruti-Sola M; Franzosi R; Cohen EG Chaos; 2005 Mar; 15(1):15106. PubMed ID: 15836283 [TBL] [Abstract][Full Text] [Related]
27. Nonlinear and chaos characteristics of heart period time series: healthy aging and postural change. Vuksanović V; Gal V Auton Neurosci; 2005 Aug; 121(1-2):94-100. PubMed ID: 16055389 [TBL] [Abstract][Full Text] [Related]
28. Universality of dynamic scaling for avalanches in disordered Ising systems. Zheng GP; Li M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036108. PubMed ID: 12366185 [TBL] [Abstract][Full Text] [Related]
29. Destruction of Anderson localization by a weak nonlinearity. Pikovsky AS; Shepelyansky DL Phys Rev Lett; 2008 Mar; 100(9):094101. PubMed ID: 18352712 [TBL] [Abstract][Full Text] [Related]
31. Dynamic localization of Lyapunov vectors in Hamiltonian lattices. Pikovsky A; Politi A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036207. PubMed ID: 11308741 [TBL] [Abstract][Full Text] [Related]
32. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Peil M; Jacquot M; Chembo YK; Larger L; Erneux T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026208. PubMed ID: 19391821 [TBL] [Abstract][Full Text] [Related]
33. Analytical approach to Lyapunov time: Universal scaling and thermalization. Liu Y; He D Phys Rev E; 2021 Apr; 103(4):L040203. PubMed ID: 34005992 [TBL] [Abstract][Full Text] [Related]
34. Nonlinear waves in disordered chains: probing the limits of chaos and spreading. Bodyfelt JD; Laptyeva TV; Skokos Ch; Krimer DO; Flach S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016205. PubMed ID: 21867271 [TBL] [Abstract][Full Text] [Related]
35. Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators. Romero-Bastida M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056204. PubMed ID: 15244901 [TBL] [Abstract][Full Text] [Related]
36. The transition between strong and weak chaos in delay systems: Stochastic modeling approach. Jüngling T; D'Huys O; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062918. PubMed ID: 26172783 [TBL] [Abstract][Full Text] [Related]
37. Numerical study of Lyapunov exponents for products of correlated random matrices. Yamada H; Okabe T Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026203. PubMed ID: 11308554 [TBL] [Abstract][Full Text] [Related]
38. [Chaos and fractals and their applications in electrocardial signal research]. Jiao Q; Guo Y; Zhang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):676-80. PubMed ID: 19634696 [TBL] [Abstract][Full Text] [Related]
39. Numerical study of chaos based on a shell model. Yagi M; Itoh SI; Itoh K; Fukuyama A Chaos; 1999 Jun; 9(2):393-402. PubMed ID: 12779837 [TBL] [Abstract][Full Text] [Related]
40. Compactons and chaos in strongly nonlinear lattices. Ahnert K; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026209. PubMed ID: 19391822 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]