These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21405900)

  • 1. Prediction of strong-shock structure using the bimodal distribution function.
    Solovchuk MA; Sheu TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026301. PubMed ID: 21405900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of shock structure using the bimodal distribution function.
    Solovchuk MA; Sheu TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056314. PubMed ID: 20866329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong shock as a stringent test for Onsager-Burnett equations.
    Jadhav RS; Agrawal A
    Phys Rev E; 2020 Dec; 102(6-1):063111. PubMed ID: 33466076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.
    Nedea SV; van Steenhoven AA; Markvoort AJ; Spijker P; Giordano D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053012. PubMed ID: 25353885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shock waves: The Maxwell-Cattaneo case.
    Uribe FJ
    Phys Rev E; 2016 Mar; 93(3):033110. PubMed ID: 27078450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
    He YG; Tang XZ; Pu YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):017301. PubMed ID: 18764085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DSMC simulation and experimental validation of shock interaction in hypersonic low density flow.
    Xiao H; Shang Y; Wu D
    ScientificWorldJournal; 2014; 2014():732765. PubMed ID: 24672360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burnett description for plane Poiseuille flow.
    Uribe FJ; Garcia AL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):4063-78. PubMed ID: 11970243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized hydrodynamic theory of shock waves in rigid diatomic gases.
    Al-Ghoul M; Eu BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046303. PubMed ID: 11690142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock wave profiles in the burnett approximation.
    Uribe FJ; Velasco RM; Garcia-Colin LS; Diaz-Herrera E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6648-66. PubMed ID: 11102002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and second-law analysis of a micro- or nanocavity using direct-simulation Monte Carlo.
    Mohammadzadeh A; Roohi E; Niazmand H; Stefanov S; Myong RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056310. PubMed ID: 23004865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular gas dynamics observations of Chapman-Enskog behavior and departures there from in nonequilibrium gases.
    Gallis MA; Torczynski JR; Rader DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):042201. PubMed ID: 15169048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium molecular motion in a hypersonic shock wave.
    Pham-Van-Diep G; Erwin D; Muntz EP
    Science; 1989 Aug; 245(4918):624-6. PubMed ID: 17837616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The direct simulation of acoustics on Earth, Mars, and Titan.
    Hanford AD; Long LN
    J Acoust Soc Am; 2009 Feb; 125(2):640-50. PubMed ID: 19206842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlocal Effects and Slip Heat Flow in Nanolayers.
    Zhu CY; You W; Li ZY
    Sci Rep; 2017 Aug; 7(1):9568. PubMed ID: 28852141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady relativistic shock-wave diffraction by cylinders and spheres.
    Tsai IN; Huang JC; Tsai SS; Yang JY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026317. PubMed ID: 22463327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo.
    Parsons N; Levin DA; van Duin AC; Zhu T
    J Chem Phys; 2014 Dec; 141(23):234307. PubMed ID: 25527935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Study of Gas Flow in Super Nanoporous Materials Using the Direct Simulation Monte-Carlo Method.
    Shariati V; Roohi E; Ebrahimi A
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized hydrodynamic theory of shock waves: Mach-number dependence of inverse shock width for nitrogen gas.
    Al-Ghoul M; Eu BC
    Phys Rev Lett; 2001 May; 86(19):4294-7. PubMed ID: 11328158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.