These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Bykova NV; Rampitsch C Proteomics; 2013 Feb; 13(3-4):579-96. PubMed ID: 23197359 [TBL] [Abstract][Full Text] [Related]
3. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657 [TBL] [Abstract][Full Text] [Related]
4. Redox proteomics: from bench to bedside. Ckless K Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188 [TBL] [Abstract][Full Text] [Related]
5. [Redox modifications of cysteine residues in plant proteins]. Szworst-Łupina D; Rusinowski Z; Zagdańska B Postepy Biochem; 2015; 61(2):191-7. PubMed ID: 26689012 [TBL] [Abstract][Full Text] [Related]
6. The emerging roles of protein glutathionylation in chloroplasts. Zaffagnini M; Bedhomme M; Lemaire SD; Trost P Plant Sci; 2012 Apr; 185-186():86-96. PubMed ID: 22325869 [TBL] [Abstract][Full Text] [Related]
7. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Rinalducci S; Murgiano L; Zolla L J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746 [TBL] [Abstract][Full Text] [Related]
8. Plant proteins under oxidative attack. Jacques S; Ghesquière B; Van Breusegem F; Gevaert K Proteomics; 2013 Mar; 13(6):932-40. PubMed ID: 23172756 [TBL] [Abstract][Full Text] [Related]
9. Mass spectrometry and redox proteomics: applications in disease. Butterfield DA; Gu L; Di Domenico F; Robinson RA Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952 [TBL] [Abstract][Full Text] [Related]
10. Oxidative post-translational modifications of cysteine residues in plant signal transduction. Waszczak C; Akter S; Jacques S; Huang J; Messens J; Van Breusegem F J Exp Bot; 2015 May; 66(10):2923-34. PubMed ID: 25750423 [TBL] [Abstract][Full Text] [Related]
11. Posttranslational Protein Modifications in Plant Metabolism. Friso G; van Wijk KJ Plant Physiol; 2015 Nov; 169(3):1469-87. PubMed ID: 26338952 [TBL] [Abstract][Full Text] [Related]
12. Cysteines under ROS attack in plants: a proteomics view. Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420 [TBL] [Abstract][Full Text] [Related]
13. Advances in crop proteomics: PTMs of proteins under abiotic stress. Wu X; Gong F; Cao D; Hu X; Wang W Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472 [TBL] [Abstract][Full Text] [Related]
14. Concepts and approaches towards understanding the cellular redox proteome. Ströher E; Dietz KJ Plant Biol (Stuttg); 2006 Jul; 8(4):407-18. PubMed ID: 16906481 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology. Wani R; Murray BW Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239 [TBL] [Abstract][Full Text] [Related]
16. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Tanou G; Ziogas V; Belghazi M; Christou A; Filippou P; Job D; Fotopoulos V; Molassiotis A Plant Cell Environ; 2014 Apr; 37(4):864-85. PubMed ID: 24112028 [TBL] [Abstract][Full Text] [Related]
17. Cysteine-mediated redox signalling in the mitochondria. Bak DW; Weerapana E Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845 [TBL] [Abstract][Full Text] [Related]