BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 21406624)

  • 1. Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin.
    Strader LC; Wheeler DL; Christensen SE; Berens JC; Cohen JD; Rampey RA; Bartel B
    Plant Cell; 2011 Mar; 23(3):984-99. PubMed ID: 21406624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings.
    Strader LC; Culler AH; Cohen JD; Bartel B
    Plant Physiol; 2010 Aug; 153(4):1577-86. PubMed ID: 20562230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long chain acyl CoA synthetase 4 catalyzes the first step in peroxisomal indole-3-butyric acid to IAA conversion.
    Jawahir V; Zolman BK
    Plant Physiol; 2021 Feb; 185(1):120-136. PubMed ID: 33631795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles for IBA-derived auxin in plant development.
    Frick EM; Strader LC
    J Exp Bot; 2018 Jan; 69(2):169-177. PubMed ID: 28992091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.
    Schlicht M; Ludwig-Müller J; Burbach C; Volkmann D; Baluska F
    New Phytol; 2013 Oct; 200(2):473-482. PubMed ID: 23795714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Alterations in the Enoyl-CoA Hydratase 2 Mutant Disrupt Peroxisomal Pathways in Seedlings.
    Li Y; Liu Y; Zolman BK
    Plant Physiol; 2019 Aug; 180(4):1860-1876. PubMed ID: 31138624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.
    Poupart J; Rashotte AM; Muday GK; Waddell CS
    Plant Physiol; 2005 Nov; 139(3):1460-71. PubMed ID: 16258013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.
    Fattorini L; Veloccia A; Della Rovere F; D'Angeli S; Falasca G; Altamura MM
    BMC Plant Biol; 2017 Jul; 17(1):121. PubMed ID: 28693423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis.
    Rashotte AM; Poupart J; Waddell CS; Muday GK
    Plant Physiol; 2003 Oct; 133(2):761-72. PubMed ID: 14526119
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Sherp AM; Westfall CS; Alvarez S; Jez JM
    J Biol Chem; 2018 Mar; 293(12):4277-4288. PubMed ID: 29462792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana.
    Veloccia A; Fattorini L; Della Rovere F; Sofo A; D'Angeli S; Betti C; Falasca G; Altamura MM
    J Exp Bot; 2016 Dec; 67(22):6445-6458. PubMed ID: 27831474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis.
    Poupart J; Waddell CS
    Plant Physiol; 2000 Dec; 124(4):1739-51. PubMed ID: 11115890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid.
    Ruzicka K; Strader LC; Bailly A; Yang H; Blakeslee J; Langowski L; Nejedlá E; Fujita H; Itoh H; Syono K; Hejátko J; Gray WM; Martinoia E; Geisler M; Bartel B; Murphy AS; Friml J
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10749-53. PubMed ID: 20498067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HOMEOBOX PROTEIN 24 mediates the conversion of indole-3-butyric acid to indole-3-acetic acid to promote root hair elongation.
    Zhao H; Wang Y; Zhao S; Fu Y; Zhu L
    New Phytol; 2021 Dec; 232(5):2057-2070. PubMed ID: 34480752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin signaling through SCF
    Takato S; Kakei Y; Mitsui M; Ishida Y; Suzuki M; Yamazaki C; Hayashi KI; Ishii T; Nakamura A; Soeno K; Shimada Y
    Biosci Biotechnol Biochem; 2017 Jul; 81(7):1320-1326. PubMed ID: 28406060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRANSPORTER OF IBA1 Links Auxin and Cytokinin to Influence Root Architecture.
    Michniewicz M; Ho CH; Enders TA; Floro E; Damodaran S; Gunther LK; Powers SK; Frick EM; Topp CN; Frommer WB; Strader LC
    Dev Cell; 2019 Sep; 50(5):599-609.e4. PubMed ID: 31327740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis iba response5 suppressors separate responses to various hormones.
    Strader LC; Monroe-Augustus M; Rogers KC; Lin GL; Bartel B
    Genetics; 2008 Dec; 180(4):2019-31. PubMed ID: 18832358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid.
    Strader LC; Bartel B
    Plant Cell; 2009 Jul; 21(7):1992-2007. PubMed ID: 19648296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The
    Watanabe S; Takahashi N; Kanno Y; Suzuki H; Aoi Y; Takeda-Kamiya N; Toyooka K; Kasahara H; Hayashi KI; Umeda M; Seo M
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31500-31509. PubMed ID: 33219124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response.
    Zolman BK; Nyberg M; Bartel B
    Plant Mol Biol; 2007 May; 64(1-2):59-72. PubMed ID: 17277896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.