These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 21406763)
1. Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials. Kamenetskii EO J Phys Condens Matter; 2010 Dec; 22(48):486005. PubMed ID: 21406763 [TBL] [Abstract][Full Text] [Related]
2. Magnetic-dipolar and electromagnetic vortices in quasi-2D ferrite discs. Sigalov M; Kamenetskii EO; Shavit R J Phys Condens Matter; 2009 Jan; 21(1):016003. PubMed ID: 21817240 [TBL] [Abstract][Full Text] [Related]
3. Topological properties of microwave magnetoelectric fields. Berezin M; Kamenetskii EO; Shavit R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023207. PubMed ID: 25353595 [TBL] [Abstract][Full Text] [Related]
4. Magnetic vortex state stability, reversal and dynamics in restricted geometries. Guslienko KY J Nanosci Nanotechnol; 2008 Jun; 8(6):2745-60. PubMed ID: 18681013 [TBL] [Abstract][Full Text] [Related]
5. Microwave magnetoelectric fields and their role in the matter-field interaction. Kamenetskii EO; Joffe R; Shavit R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023201. PubMed ID: 23496631 [TBL] [Abstract][Full Text] [Related]
6. Energy eigenstates of magnetostatic waves and oscillations. Kamenetskii EO Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066612. PubMed ID: 11415247 [TBL] [Abstract][Full Text] [Related]
7. Microwave whirlpools in a rectangular waveguide cavity with a thin ferrite disk. Kamenetskii EO; Sigalov M; Shavit R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036620. PubMed ID: 17025777 [TBL] [Abstract][Full Text] [Related]
8. Self-induced quasistationary magnetic fields. Kamenetskii EO Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016602. PubMed ID: 16486290 [TBL] [Abstract][Full Text] [Related]
9. Effect of dynamical traps on chaotic transport in a meandering jet flow. Uleysky MY; Budyansky MV; Prants SV Chaos; 2007 Dec; 17(4):043105. PubMed ID: 18163769 [TBL] [Abstract][Full Text] [Related]
10. Excitation of vortices using linear and nonlinear magnetostatic waves. Boardman AD; Rapoport YG; Grimalsky VV; Ivanov BA; Koshevaya SV; Velasco L; Zaspel CE Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026614. PubMed ID: 15783448 [TBL] [Abstract][Full Text] [Related]
15. Symmetry breaking of optical vortices: birth and annihilation of singularities in the evanescent field. Brandão PA; Julião CS Opt Lett; 2011 May; 36(9):1563-5. PubMed ID: 21540928 [TBL] [Abstract][Full Text] [Related]
16. Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity. Bray MA; Wikswo JP IEEE Trans Biomed Eng; 2002 Oct; 49(10):1086-93. PubMed ID: 12374332 [TBL] [Abstract][Full Text] [Related]
17. Particle dispersibility and giant reduction in dynamic modulus of magnetic gels containing barium ferrite and iron oxide particles. Mitsumata T; Wakabayashi T; Okazaki T J Phys Chem B; 2008 Nov; 112(45):14132-9. PubMed ID: 18939787 [TBL] [Abstract][Full Text] [Related]
18. Optical manipulation of magnetic vortices visualized in situ by Lorentz electron microscopy. Fu X; Pollard SD; Chen B; Yoo BK; Yang H; Zhu Y Sci Adv; 2018 Jul; 4(7):eaat3077. PubMed ID: 30035226 [TBL] [Abstract][Full Text] [Related]
19. Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α. Mitri FG Opt Lett; 2011 Mar; 36(5):606-8. PubMed ID: 21368922 [TBL] [Abstract][Full Text] [Related]
20. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Van Waeyenberge B; Puzic A; Stoll H; Chou KW; Tyliszczak T; Hertel R; Fähnle M; Brückl H; Rott K; Reiss G; Neudecker I; Weiss D; Back CH; Schütz G Nature; 2006 Nov; 444(7118):461-4. PubMed ID: 17122851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]