BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21406874)

  • 1. Stress and interdiffusion during molecular beam epitaxy of Fe on As-rich GaAs(001).
    Ashraf T; Gusenbauer C; Stangl J; Hesser G; Wegscheider M; Koch R
    J Phys Condens Matter; 2011 Feb; 23(4):042001. PubMed ID: 21406874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.
    Thomas J; Schumann J; Vinzelberg H; Arushanov E; Engelhard R; Schmidt OG; Gemming T
    Nanotechnology; 2009 Jun; 20(23):235604. PubMed ID: 19451681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, structure and morphology of epitaxial Fe(0 0 1) films on GaAs(0 0 1)c(4 × 4).
    Ashraf T; Gusenbauer C; Stangl J; Hesser G; Koch R
    J Phys Condens Matter; 2015 Jan; 27(3):036001. PubMed ID: 25538047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidences of enhanced Ga interdiffusion in InAs vertically aligned free-standing nanowires.
    González JC; Malachias A; Andrade RR; de Sousa JC; Moreira MV; de Oliveira AG
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4673-8. PubMed ID: 19928133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain accommodation in Ga-assisted GaAs nanowires grown on silicon (111).
    Biermanns A; Breuer S; Trampert A; Davydok A; Geelhaar L; Pietsch U
    Nanotechnology; 2012 Aug; 23(30):305703. PubMed ID: 22751267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of CuGaSe
    Thiru S; Asakawa M; Honda K; Kawaharazuka A; Tackeuchi A; Makimoto T; Horikoshi Y
    AIP Adv; 2015 Feb; 5(2):027120. PubMed ID: 25874158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GaAs Clusters in the Quantum Size Regime: Growth on High Surface Area Silica by Molecular Beam Epitaxy.
    Sandroff CJ; Harbison JP; Ramesh R; Andrejco MJ; Hegde MS; Chang CC; Vogel EM; Hwang DM
    Science; 1989 Jul; 245(4916):391-3. PubMed ID: 17744146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-free growth of GaAs nanowires on silicon: arrays and polytypism.
    Plissard S; Dick KA; Larrieu G; Godey S; Addad A; Wallart X; Caroff P
    Nanotechnology; 2010 Sep; 21(38):385602. PubMed ID: 20798467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures.
    Heiss M; Gustafsson A; Conesa-Boj S; Peiró F; Morante JR; Abstreiter G; Arbiol J; Samuelson L; Fontcuberta i Morral A
    Nanotechnology; 2009 Feb; 20(7):075603. PubMed ID: 19417424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy.
    Morales-Cortés H; Mejía-García C; Méndez-García VH; Vázquez-Cortés D; Rojas-Ramírez JS; Contreras-Guerrero R; Ramírez-López M; Martínez-Velis I; López-López M
    Nanotechnology; 2010 Apr; 21(13):134012. PubMed ID: 20208110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnTe-ZnO core-shell radial heterostructures grown by the combination of molecular beam epitaxy and atomic layer deposition.
    Janik E; Wachnicka A; Guziewicz E; Godlewski M; Kret S; Zaleszczyk W; Dynowska E; Presz A; Karczewski G; Wojtowicz T
    Nanotechnology; 2010 Jan; 21(1):015302. PubMed ID: 19946158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stages in molecular beam epitaxy growth of GaAs nanowires studied by x-ray diffraction.
    Mariager SO; Lauridsen SL; Sørensen CB; Dohn A; Willmott PR; Nygård J; Feidenhans'l R
    Nanotechnology; 2010 Mar; 21(11):115603. PubMed ID: 20173223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using metallic interlayers to stabilize abrupt, epitaxial metal-metal interfaces.
    Ramana CV; Masse P; Smith RJ; Choi BS
    Phys Rev Lett; 2003 Feb; 90(6):066101. PubMed ID: 12633303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InGaN nanopillars grown on silicon substrate using plasma assisted molecular beam epitaxy.
    Vajpeyi AP; Ajagunna AO; Tsagaraki K; Androulidaki M; Georgakilas A
    Nanotechnology; 2009 Aug; 20(32):325605. PubMed ID: 19620761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled Al(x)Ga(1-x)N nanorods grown on Si(001) substrates by using plasma-assisted molecular beam epitaxy.
    Park YS; Hwang BR; Lee JC; Im H; Cho HY; Kang TW; Na JH; Park CM
    Nanotechnology; 2006 Sep; 17(18):4640-3. PubMed ID: 21727589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates.
    Sun MH; Leong ES; Chin AH; Ning CZ; Cirlin GE; Samsonenko YB; Dubrovskii VG; Chuang L; Chang-Hasnain C
    Nanotechnology; 2010 Aug; 21(33):335705. PubMed ID: 20657047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission electron microscopy characterization of Au/Pt/Ti/Pt/GaAs ohmic contacts for high power GaAs/InGaAs semiconductor lasers.
    Łaszcz A; Czerwinski A; Ratajczak J; Szerling A; Phillipp F; Van Aken PA; Katcki J
    J Microsc; 2010 Mar; 237(3):347-51. PubMed ID: 20500394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy.
    Bauer B; Rudolph A; Soda M; Fontcuberta i Morral A; Zweck J; Schuh D; Reiger E
    Nanotechnology; 2010 Oct; 21(43):435601. PubMed ID: 20876983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi.
    Wu M; Luna E; Puustinen J; Guina M; Trampert A
    Nanotechnology; 2014 May; 25(20):205605. PubMed ID: 24786304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.