These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21406923)

  • 1. Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles.
    Bystrov VS; Paramonova E; Dekhtyar Y; Katashev A; Karlov A; Polyaka N; Bystrova AV; Patmalnieks A; Kholkin AL
    J Phys Condens Matter; 2011 Feb; 23(6):065302. PubMed ID: 21406923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study.
    Zhao W; Xu Z; Yang Y; Sahai N
    Langmuir; 2014 Nov; 30(44):13283-92. PubMed ID: 25314374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of elastic constants of hydroxyapatite and fluorapatite.
    Menéndez-Proupin E; Cervantes-Rodríguez S; Osorio-Pulgar R; Franco-Cisterna M; Camacho-Montes H; Fuentes ME
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1011-20. PubMed ID: 21783111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HAP nanoparticle and substrate surface electrical potential towards bone cells adhesion: Recent results review.
    Bystrov V; Bystrova A; Dekhtyar Y
    Adv Colloid Interface Sci; 2017 Nov; 249():213-219. PubMed ID: 28734346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans.
    Han Y; Li S; Wang X; Bauer I; Yin M
    Ultrason Sonochem; 2007 Mar; 14(3):286-90. PubMed ID: 16904363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles.
    Tao J; Pan H; Zeng Y; Xu X; Tang R
    J Phys Chem B; 2007 Nov; 111(47):13410-8. PubMed ID: 17979266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior.
    Kandori K; Toshima S; Wakamura M; Fukusumi M; Morisada Y
    J Phys Chem B; 2010 Feb; 114(7):2399-404. PubMed ID: 20121272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization of DNA into nanoparticles of hydroxyapatite.
    Bertran O; del Valle LJ; Revilla-López G; Chaves G; Cardús L; Casas MT; Casanovas J; Turon P; Puiggalí J; Alemán C
    Dalton Trans; 2014 Jan; 43(1):317-27. PubMed ID: 24105025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization.
    Gopi D; Kanimozhi K; Bhuvaneshwari N; Indira J; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():589-97. PubMed ID: 24095769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts.
    Xu Z; Liu C; Wei J; Sun J
    J Appl Toxicol; 2012 Jun; 32(6):429-35. PubMed ID: 22162110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational simulations of aqueous solvated alpha-conotoxin GI and its single disulfide analogues using a polarizable force field model.
    Jiang N; Ma J
    J Phys Chem A; 2008 Oct; 112(40):9854-67. PubMed ID: 18788721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles.
    Yamini D; Devanand Venkatasubbu G; Kumar J; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():299-303. PubMed ID: 23998962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions.
    Han Y; Wang X; Dai H; Li S
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4616-22. PubMed ID: 22860897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite.
    Jäger C; Welzel T; Meyer-Zaika W; Epple M
    Magn Reson Chem; 2006 Jun; 44(6):573-80. PubMed ID: 16395729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of particle size of hydroxyapatite nanoparticles on its biocompatibility.
    Ding T; Xue Y; Lu H; Huang Z; Sun J
    IEEE Trans Nanobioscience; 2012 Dec; 11(4):336-40. PubMed ID: 22438516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic synthesis of ribbon-like hydroxyapatite employing poly(l-arginine).
    Tsiourvas D; Tsetsekou A; Kammenou MI; Boukos N
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1225-31. PubMed ID: 26478425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H; Tao J; Xu X; Tang R
    Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.