These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2140699)

  • 1. Characterization of a vanadate-based transition-state-analogue complex of phosphoglucomutase by kinetic and equilibrium binding studies. Mechanistic implications.
    Ray WJ; Puvathingal JM
    Biochemistry; 1990 Mar; 29(11):2790-801. PubMed ID: 2140699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of vanadate-based transition-state-analogue complexes of phosphoglucomutase by spectral and NMR techniques.
    Ray WJ; Burgner JW; Post CB
    Biochemistry; 1990 Mar; 29(11):2770-8. PubMed ID: 2140697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of rate constants for (PO3-) transfer by the Mg(II), Cd(II), and Li(I) forms of phosphoglucomutase.
    Ray WJ; Post CB; Puvathingal JM
    Biochemistry; 1989 Jan; 28(2):559-69. PubMed ID: 2523729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxyvanadium constellation in transition-state-analogue complexes of phosphoglucomutase and ribonuclease. Structural deductions from electron-transfer spectra.
    Ray WJ; Post CB
    Biochemistry; 1990 Mar; 29(11):2779-89. PubMed ID: 2140698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of vibrational frequencies of critical bonds in ground-state complexes and in a vanadate-based transition-state analog complex of muscle phosphoglucomutase. Mechanistic implications.
    Deng H; Ray WJ; Burgner JW; Callender R
    Biochemistry; 1993 Dec; 32(48):12984-92. PubMed ID: 8241152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics and mechanism of the PO3 transfer process in the phosphoglucomutase reaction.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):3993-4006. PubMed ID: 963018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of phosphoglucomutase by vanadate.
    Percival MD; Doherty K; Gresser MJ
    Biochemistry; 1990 Mar; 29(11):2764-9. PubMed ID: 2140696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the substrate-induced rate effect in the phosphoglucomutase system.
    Ray WJ; Long JW; Owens JD
    Biochemistry; 1976 Sep; 15(18):4006-17. PubMed ID: 963019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-bound intermediates in the conversion of glucose 1-phosphate to glucose 6-phosphate by phosphoglucomutase. Phosphorus NMR studies.
    Rhyu GI; Ray WJ; Markley JL
    Biochemistry; 1984 Jan; 23(2):252-60. PubMed ID: 6230103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thermodynamic and structural differences among the catalytically active complexes of phosphoglucomutase: metal ion effects.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):4018-25. PubMed ID: 963020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of substrate and transition-state analogue complexes in crystals of phosphoglucomutase after removing the crystallization salt.
    Ray WJ; Puvathingal JM; Liu YW
    Biochemistry; 1991 Jul; 30(28):6875-85. PubMed ID: 1829964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The binding of lithium and of anionic metabolites to phosphoglucomutase.
    Ray WJ; Szymanki ES; Ng L
    Biochim Biophys Acta; 1978 Feb; 522(2):434-42. PubMed ID: 623770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of the isosteric methylenephosphonate analog of alpha-D-glucose 1-phosphate with phosphoglucomutase. Induced-fit specificity revisited.
    Ray WJ; Post CB; Puvathingal JM
    Biochemistry; 1993 Jan; 32(1):38-47. PubMed ID: 8418857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent 31P saturation transfer in the phosphoglucomutase reaction. Characterization of the spin system for the Cd(II) enzyme and evaluation of rate constants for the transfer process.
    Post CB; Ray WJ; Gorenstein DG
    Biochemistry; 1989 Jan; 28(2):548-58. PubMed ID: 2523728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes at the metal ion binding site during the phosphoglucomutase reaction.
    Ray WJ; Post CB; Liu Y; Rhyu GI
    Biochemistry; 1993 Jan; 32(1):48-57. PubMed ID: 8418859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multinuclear magnetic resonance studies of metal ion binding sites of phosphoglucomutase.
    Rhyu GI; Ray WJ; Markley JL
    Biochemistry; 1985 May; 24(10):2536-41. PubMed ID: 2990531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and reorientation of glucose 1,6-bisphosphate in the PMM/PGM reaction: transient-state kinetic studies.
    Naught LE; Tipton PA
    Biochemistry; 2005 May; 44(18):6831-6. PubMed ID: 15865428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial purification and some properties of beta-phosphoglucomutase from Lactobacillus brevis.
    Marechal LR; Oliver G; Veiga LA; de Ruiz Holgado AA
    Arch Biochem Biophys; 1984 Feb; 228(2):592-9. PubMed ID: 6230052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of beta-phosphoglucomutase and its inhibition by magnesium fluoride.
    Golicnik M; Olguin LF; Feng G; Baxter NJ; Waltho JP; Williams NH; Hollfelder F
    J Am Chem Soc; 2009 Feb; 131(4):1575-88. PubMed ID: 19132841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state analogues for nucleotidyl transfer reactions: Structure and stability of pentavalent vanadate and phosphate ester dianions.
    Borden J; Crans DC; Florián J
    J Phys Chem B; 2006 Aug; 110(30):14988-99. PubMed ID: 16869614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.