BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21407126)

  • 1. Fructose and galactose enhance postexercise human liver glycogen synthesis.
    Décombaz J; Jentjens R; Ith M; Scheurer E; Buehler T; Jeukendrup A; Boesch C
    Med Sci Sports Exerc; 2011 Oct; 43(10):1964-71. PubMed ID: 21407126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of galactose supplementation on endurance cycling performance.
    Stannard SR; Hawke EJ; Schnell N
    Eur J Clin Nutr; 2009 Feb; 63(2):209-14. PubMed ID: 17928803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement.
    Berardi JM; Price TB; Noreen EE; Lemon PW
    Med Sci Sports Exerc; 2006 Jun; 38(6):1106-13. PubMed ID: 16775553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preexercise galactose and glucose ingestion on fuel use during exercise.
    O'Hara JP; Carroll S; Cooke CB; Morrison DJ; Preston T; King RF
    Med Sci Sports Exerc; 2012 Oct; 44(10):1958-67. PubMed ID: 22525771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion.
    Wallis GA; Hulston CJ; Mann CH; Roper HP; Tipton KD; Jeukendrup AE
    Med Sci Sports Exerc; 2008 Oct; 40(10):1789-94. PubMed ID: 18799989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose Coingestion Does Not Accelerate Postexercise Muscle Glycogen Repletion.
    Trommelen J; Beelen M; Pinckaers PJ; Senden JM; Cermak NM; Van Loon LJ
    Med Sci Sports Exerc; 2016 May; 48(5):907-12. PubMed ID: 26606271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of caffeine and protein on postexercise muscle glycogen synthesis.
    Beelen M; Kranenburg Jv; Senden JM; Kuipers H; Loon LJ
    Med Sci Sports Exerc; 2012 Apr; 44(4):692-700. PubMed ID: 21986807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of selected carbohydrate drinks on cycling performance and glycogen use.
    Flynn MG; Costill DL; Hawley JA; Fink WJ; Neufer PD; Fielding RA; Sleeper MD
    Med Sci Sports Exerc; 1987 Feb; 19(1):37-40. PubMed ID: 3821453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liver and muscle glycogen repletion using 13C magnetic resonance spectroscopy following ingestion of maltodextrin, galactose, protein and amino acids.
    Detko E; O'Hara JP; Thelwall PE; Smith FE; Jakovljevic DG; King RF; Trenell MI
    Br J Nutr; 2013 Sep; 110(5):848-55. PubMed ID: 23388155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals.
    Rosset R; Lecoultre V; Egli L; Cros J; Dokumaci AS; Zwygart K; Boesch C; Kreis R; Schneiter P; Tappy L
    Am J Clin Nutr; 2017 Mar; 105(3):609-617. PubMed ID: 28100512
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of pre-exercise carbohydrate feedings on endurance cycling performance.
    Hargreaves M; Costill DL; Fink WJ; King DS; Fielding RA
    Med Sci Sports Exerc; 1987 Feb; 19(1):33-6. PubMed ID: 3547009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plasma global metabolic profiling approach applied to an exercise study monitoring the effects of glucose, galactose and fructose drinks during post-exercise recovery.
    Bruce SJ; Breton I; Decombaz J; Boesch C; Scheurer E; Montoliu I; Rezzi S; Kochhar S; Guy PA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Nov; 878(29):3015-23. PubMed ID: 20933482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postexercise Fructose-Maltodextrin Ingestion Enhances Subsequent Endurance Capacity.
    Maunder E; Podlogar T; Wallis GA
    Med Sci Sports Exerc; 2018 May; 50(5):1039-1045. PubMed ID: 29232314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycogen synthesis after road cycling in the fed state.
    Reinert A; Slivka D; Cuddy J; Ruby B
    Int J Sports Med; 2009 Jul; 30(7):545-9. PubMed ID: 19455481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postexercise Glucose-Fructose Coingestion Augments Cycling Capacity During Short-Term and Overnight Recovery From Exhaustive Exercise, Compared With Isocaloric Glucose.
    Gray EA; Green TA; Betts JA; Gonzalez JT
    Int J Sport Nutr Exerc Metab; 2020 Jan; 30(1):54-61. PubMed ID: 31715584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Muscle Glycogen Availability on the Capacity for Repeated Exercise in Man.
    Alghannam AF; Jedrzejewski D; Tweddle MG; Gribble H; Bilzon J; Thompson D; Tsintzas K; Betts JA
    Med Sci Sports Exerc; 2016 Jan; 48(1):123-31. PubMed ID: 26197030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance.
    Coggan AR; Coyle EF
    Exerc Sport Sci Rev; 1991; 19():1-40. PubMed ID: 1936083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate nutrition before, during, and after exercise.
    Costill DL
    Fed Proc; 1985 Feb; 44(2):364-8. PubMed ID: 3967778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postexercise muscle glycogen synthesis with glucose, galactose, and combined galactose-glucose ingestion.
    Podlogar T; Shad BJ; Seabright AP; Odell OJ; Lord SO; Civil R; Salgueiro RB; Shepherd EL; Lalor PF; Elhassan YS; Lai YC; Rowlands DS; Wallis GA
    Am J Physiol Endocrinol Metab; 2023 Dec; 325(6):E672-E681. PubMed ID: 37850935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Post-Exercise Fructose-Maltodextrin Ingestion on Subsequent Endurance Performance.
    Podlogar T; Wallis GA
    Front Nutr; 2020; 7():82. PubMed ID: 32582755
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.