These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21408178)

  • 1. Mechanism of and threshold biomechanical conditions for falsetto voice onset.
    Deguchi S
    PLoS One; 2011 Mar; 6(3):e17503. PubMed ID: 21408178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical consideration of the flow behavior in oscillating vocal fold.
    Deguchi S; Hyakutake T
    J Biomech; 2009 May; 42(7):824-9. PubMed ID: 19269641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences Among Mixed, Chest, and Falsetto Registers: A Multiparametric Study.
    Lee Y; Oya M; Kaburagi T; Hidaka S; Nakagawa T
    J Voice; 2023 Mar; 37(2):298.e11-298.e29. PubMed ID: 33518476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.
    Lucero JC; Koenig LL; Lourenço KG; Ruty N; Pelorson X
    J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physics of small-amplitude oscillation of the vocal folds.
    Titze IR
    J Acoust Soc Am; 1988 Apr; 83(4):1536-52. PubMed ID: 3372869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comments on the myoelastic - aerodynamic theory of phonation.
    Titze IR
    J Speech Hear Res; 1980 Sep; 23(3):495-510. PubMed ID: 7421153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "Overdrive" Mode in the "Complete Vocal Technique": A Preliminary Study.
    Sundberg J; Bitelli M; Holmberg A; Laaksonen V
    J Voice; 2017 Sep; 31(5):528-535. PubMed ID: 28347616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory Characteristics of the Vocal Folds Across the Tenor Passaggio.
    Echternach M; Burk F; Köberlein M; Herbst CT; Döllinger M; Burdumy M; Richter B
    J Voice; 2017 May; 31(3):381.e5-381.e14. PubMed ID: 27499033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-stable vocal fold adduction: a mechanism of modal-falsetto register shifts and mixed registration.
    Titze IR
    J Acoust Soc Am; 2014 Apr; 135(4):2091-101. PubMed ID: 25235006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of inferior-superior vocal fold kinematics from high-speed stereo endoscopic data in vivo.
    Sommer DE; Tokuda IT; Peterson SD; Sakakibara K; Imagawa H; Yamauchi A; Nito T; Yamasoba T; Tayama N
    J Acoust Soc Am; 2014 Dec; 136(6):3290. PubMed ID: 25480074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT; Ternström S; Svec JG
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production.
    Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R
    J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voice Signals Produced With Jitter Through a Stochastic One-mass Mechanical Model.
    Cataldo E; Soize C
    J Voice; 2017 Jan; 31(1):111.e9-111.e18. PubMed ID: 26898394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of characteristic leap interval between chest and falsetto registers.
    Miller DG; Svec JG; Schutte HK
    J Voice; 2002 Mar; 16(1):8-19. PubMed ID: 12002890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Potential Role of Subglottal Convergence Angle and Measurement.
    Xu X; Wang J; Devine EE; Wang Y; Zhong H; Courtright MR; Zhou L; Zhuang P; Jiang JJ
    J Voice; 2017 Jan; 31(1):116.e1-116.e5. PubMed ID: 27133615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.