BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 21408208)

  • 1. Initial mutations direct alternative pathways of protein evolution.
    Salverda ML; Dellus E; Gorter FA; Debets AJ; van der Oost J; Hoekstra RF; Tawfik DS; de Visser JA
    PLoS Genet; 2011 Mar; 7(3):e1001321. PubMed ID: 21408208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories.
    Guthrie VB; Allen J; Camps M; Karchin R
    PLoS Comput Biol; 2011 Sep; 7(9):e1002184. PubMed ID: 21966264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The Thin Line between an Enzyme's Conformational Freedom and Disorder.
    Dellus-Gur E; Elias M; Caselli E; Prati F; Salverda ML; de Visser JA; Fraser JS; Tawfik DS
    J Mol Biol; 2015 Jul; 427(14):2396-409. PubMed ID: 26004540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
    Schenk MF; Szendro IG; Salverda ML; Krug J; de Visser JA
    Mol Biol Evol; 2013 Aug; 30(8):1779-87. PubMed ID: 23676768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Darwinian evolution can follow only very few mutational paths to fitter proteins.
    Weinreich DM; Delaney NF; Depristo MA; Hartl DL
    Science; 2006 Apr; 312(5770):111-4. PubMed ID: 16601193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genetic code constrains yet facilitates Darwinian evolution.
    Firnberg E; Ostermeier M
    Nucleic Acids Res; 2013 Aug; 41(15):7420-8. PubMed ID: 23754851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bypass of genetic constraints during mutator evolution to antibiotic resistance.
    Couce A; Rodríguez-Rojas A; Blázquez J
    Proc Biol Sci; 2015 Apr; 282(1804):20142698. PubMed ID: 25716795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the adaptive potential of an antibiotic resistance enzyme.
    Schenk MF; Szendro IG; Krug J; de Visser JA
    PLoS Genet; 2012 Jun; 8(6):e1002783. PubMed ID: 22761587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing the mutational landscape of the beta-lactamase TEM-1.
    Jacquier H; Birgy A; Le Nagard H; Mechulam Y; Schmitt E; Glodt J; Bercot B; Petit E; Poulain J; Barnaud G; Gros PA; Tenaillon O
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13067-72. PubMed ID: 23878237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories.
    Weinreich DM; Watson RA; Chao L
    Evolution; 2005 Jun; 59(6):1165-74. PubMed ID: 16050094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epistatic interactions determine the mutational pathways and coexistence of lineages in clonal Escherichia coli populations.
    Maharjan RP; Ferenci T
    Evolution; 2013 Sep; 67(9):2762-8. PubMed ID: 24033182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative epistasis between beneficial mutations in an evolving bacterial population.
    Khan AI; Dinh DM; Schneider D; Lenski RE; Cooper TF
    Science; 2011 Jun; 332(6034):1193-6. PubMed ID: 21636772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection biases the prevalence and type of epistasis along adaptive trajectories.
    Draghi JA; Plotkin JB
    Evolution; 2013 Nov; 67(11):3120-31. PubMed ID: 24151997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein.
    Bershtein S; Segal M; Bekerman R; Tokuriki N; Tawfik DS
    Nature; 2006 Dec; 444(7121):929-32. PubMed ID: 17122770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Description of a Protein Fitness Landscape Based on Molecular Features.
    Meini MR; Tomatis PE; Weinreich DM; Vila AJ
    Mol Biol Evol; 2015 Jul; 32(7):1774-87. PubMed ID: 25767204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistasis constrains mutational pathways of hemoglobin adaptation in high-altitude pikas.
    Tufts DM; Natarajan C; Revsbech IG; Projecto-Garcia J; Hoffmann FG; Weber RE; Fago A; Moriyama H; Storz JF
    Mol Biol Evol; 2015 Feb; 32(2):287-98. PubMed ID: 25415962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting evolution by in vitro evolution requires determining evolutionary pathways.
    Hall BG
    Antimicrob Agents Chemother; 2002 Sep; 46(9):3035-8. PubMed ID: 12183265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region.
    da Silva J; Coetzer M; Nedellec R; Pastore C; Mosier DE
    Genetics; 2010 May; 185(1):293-303. PubMed ID: 20157005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.