BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21408212)

  • 1. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.
    Morris MK; Saez-Rodriguez J; Clarke DC; Sorger PK; Lauffenburger DA
    PLoS Comput Biol; 2011 Mar; 7(3):e1001099. PubMed ID: 21408212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of cell type-specific logic models of signaling networks using CellNOpt.
    Morris MK; Melas I; Saez-Rodriguez J
    Methods Mol Biol; 2013; 930():179-214. PubMed ID: 23086842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions.
    Morris MK; Shriver Z; Sasisekharan R; Lauffenburger DA
    Biotechnol J; 2012 Mar; 7(3):374-86. PubMed ID: 22125256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.
    Terfve C; Cokelaer T; Henriques D; MacNamara A; Goncalves E; Morris MK; van Iersel M; Lauffenburger DA; Saez-Rodriguez J
    BMC Syst Biol; 2012 Oct; 6():133. PubMed ID: 23079107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Analysis of Quantitative Logic Model Ensembles Predicts Drug Combination Effects on Cell Signaling Networks.
    Morris MK; Clarke DC; Osimiri LC; Lauffenburger DA
    CPT Pharmacometrics Syst Pharmacol; 2016 Oct; 5(10):544-553. PubMed ID: 27567007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks.
    Kirouac DC; Saez-Rodriguez J; Swantek J; Burke JM; Lauffenburger DA; Sorger PK
    BMC Syst Biol; 2012 May; 6():29. PubMed ID: 22548703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-time spectrum of signal transduction logic models.
    MacNamara A; Terfve C; Henriques D; Bernabé BP; Saez-Rodriguez J
    Phys Biol; 2012 Aug; 9(4):045003. PubMed ID: 22871648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.
    Mitsos A; Melas IN; Morris MK; Saez-Rodriguez J; Lauffenburger DA; Alexopoulos LG
    PLoS One; 2012; 7(11):e50085. PubMed ID: 23226239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network analysis of differential Ras isoform mutation effects on intestinal epithelial responses to TNF-α.
    Lau KS; Schrier SB; Gierut J; Lyons J; Lauffenburger DA; Haigis KM
    Integr Biol (Camb); 2013 Nov; 5(11):1355-65. PubMed ID: 24084984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling.
    Aldridge BB; Saez-Rodriguez J; Muhlich JL; Sorger PK; Lauffenburger DA
    PLoS Comput Biol; 2009 Apr; 5(4):e1000340. PubMed ID: 19343194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data.
    Liu H; Zhang F; Mishra SK; Zhou S; Zheng J
    Sci Rep; 2016 Oct; 6():35652. PubMed ID: 27774993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks.
    Malekpour SA; Alizad-Rahvar AR; Sadeghi M
    BMC Bioinformatics; 2020 Jul; 21(1):318. PubMed ID: 32690031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-pathway network analysis of mammalian epithelial cell responses in inflammatory environments.
    Clarke DC; Lauffenburger DA
    Biochem Soc Trans; 2012 Feb; 40(1):133-8. PubMed ID: 22260679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logic-based models for the analysis of cell signaling networks.
    Morris MK; Saez-Rodriguez J; Sorger PK; Lauffenburger DA
    Biochemistry; 2010 Apr; 49(15):3216-24. PubMed ID: 20225868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy ARTMAP prediction of biological activities for potential HIV-1 protease inhibitors using a small molecular data set.
    Andonie R; Fabry-Asztalos L; Abdul-Wahid CB; Abdul-Wahid S; Barker GI; Magill LC
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):80-93. PubMed ID: 21071799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated search for biomolecular network models to interpret high-throughput experimental data.
    Datta S; Sokhansanj BA
    BMC Bioinformatics; 2007 Jul; 8():258. PubMed ID: 17640351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic analysis of IRS-PKR signaling in liver cells: a discrete modeling approach.
    Wu M; Yang X; Chan C
    PLoS One; 2009 Dec; 4(12):e8040. PubMed ID: 19956598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of adaptive-network-based fuzzy inference systems to the parameter optimization of a biochemical rule-based model.
    Hoard BR
    Comput Biol Med; 2019 Apr; 107():153-160. PubMed ID: 30818113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy logic selection as a new reliable tool to identify molecular grade signatures in breast cancer--the INNODIAG study.
    Kempowsky-Hamon T; Valle C; Lacroix-Triki M; Hedjazi L; Trouilh L; Lamarre S; Labourdette D; Roger L; Mhamdi L; Dalenc F; Filleron T; Favre G; François JM; Le Lann MV; Anton-Leberre V
    BMC Med Genomics; 2015 Feb; 8():3. PubMed ID: 25888889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved advertising CTR prediction approach based on the fuzzy deep neural network.
    Jiang Z; Gao S; Li M
    PLoS One; 2018; 13(5):e0190831. PubMed ID: 29727443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.