BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21408226)

  • 1. Assessing the biological significance of gene expression signatures and co-expression modules by studying their network properties.
    Minguez P; Dopazo J
    PLoS One; 2011 Mar; 6(3):e17474. PubMed ID: 21408226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene set internal coherence in the context of functional profiling.
    Montaner D; Minguez P; Al-Shahrour F; Dopazo J
    BMC Genomics; 2009 Apr; 10():197. PubMed ID: 19397819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy-related protein microtubule-associated protein 1A/1B-light chain 3.
    Yang YH; Zhang YX; Gui Y; Liu JB; Sun JJ; Fan H
    World J Gastroenterol; 2019 May; 25(17):2086-2098. PubMed ID: 31114135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of responsive gene modules by network-based gene clustering and extending: application to inflammation and angiogenesis.
    Gu J; Chen Y; Li S; Li Y
    BMC Syst Biol; 2010 Apr; 4():47. PubMed ID: 20406493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana.
    Ruan J; Perez J; Hernandez B; Lei C; Sunter G; Sponsel VM
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S2. PubMed ID: 22168340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network Properties of Cancer Prognostic Gene Signatures in the Human Protein Interactome.
    Zhang J; Yan S; Jiang C; Ji Z; Wang C; Tian W
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32111006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of disrupted pathways in ulcerative colitis-related colorectal carcinoma by systematic tracking the dysregulated modules.
    Wu D; Li Q; Song G; Lu J
    J BUON; 2016; 21(2):366-74. PubMed ID: 27273946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological network analysis of differentially expressed genes in cancer cells with acquired gefitinib resistance.
    Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Kwon K; Jang CS; Noh YH; Kim SY
    Cancer Genomics Proteomics; 2015; 12(3):153-66. PubMed ID: 25977174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer.
    Xu M; Kao MC; Nunez-Iglesias J; Nevins JR; West M; Zhou XJ
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S12. PubMed ID: 18366601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression.
    Shi Z; Derow CK; Zhang B
    BMC Syst Biol; 2010 May; 4():74. PubMed ID: 20507583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of key biomarkers involved in osteosarcoma using altered modules.
    Liu ZZ; Cui ST; Tang B; Wang ZZ; Luan ZX
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying hub genes and dysregulated pathways in hepatocellular carcinoma.
    Jin B; Wang W; Du G; Huang GZ; Han LT; Tang ZY; Fan DG; Li J; Zhang SZ
    Eur Rev Med Pharmacol Sci; 2015 Feb; 19(4):592-601. PubMed ID: 25753876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression analysis reveals key gene modules and pathway of human coronary heart disease.
    Tang Y; Ke ZP; Peng YG; Cai PT
    J Cell Biochem; 2018 Feb; 119(2):2102-2109. PubMed ID: 28857241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voting-based cancer module identification by combining topological and data-driven properties.
    Azad AK; Lee H
    PLoS One; 2013; 8(8):e70498. PubMed ID: 23940583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale gene co-expression network as a source of functional annotation for cattle genes.
    Beiki H; Nejati-Javaremi A; Pakdel A; Masoudi-Nejad A; Hu ZL; Reecy JM
    BMC Genomics; 2016 Nov; 17(1):846. PubMed ID: 27806696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the mRNAs associated with Bladder cancer recurrence.
    Cao H; Cheng L; Yu J; Zhang Z; Luo Z; Chen D
    Cancer Biomark; 2020; 28(4):429-437. PubMed ID: 32390597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops.
    Mochida K; Uehara-Yamaguchi Y; Yoshida T; Sakurai T; Shinozaki K
    Plant Cell Physiol; 2011 May; 52(5):785-803. PubMed ID: 21441235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting functional modules in the yeast protein-protein interaction network.
    Chen J; Yuan B
    Bioinformatics; 2006 Sep; 22(18):2283-90. PubMed ID: 16837529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.