BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21409209)

  • 21. An investigation of myoplasmic magnesium adenosine triphosphate in barnacle muscle fibres with the firefly method.
    Bittar EE; Keh T
    J Physiol; 1980 May; 302():73-88. PubMed ID: 7411471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of an N-acyl sulfamate analog of luciferyl-AMP: a stable and potent inhibitor of firefly luciferase.
    Branchini BR; Murtiashaw MH; Carmody JN; Mygatt EE; Southworth TL
    Bioorg Med Chem Lett; 2005 Sep; 15(17):3860-4. PubMed ID: 15990297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.
    Ebrahimi M; Hosseinkhani S; Heydari A; Khavari-Nejad RA; Akbari J
    Appl Biochem Biotechnol; 2012 Oct; 168(3):604-15. PubMed ID: 22810202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic reactions in microfluidic devices: Michaelis-Menten kinetics.
    Ristenpart WD; Wan J; Stone HA
    Anal Chem; 2008 May; 80(9):3270-6. PubMed ID: 18355085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dehydroluciferyl-AMP is the main intermediate in the luciferin dependent synthesis of Ap4A catalyzed by firefly luciferase.
    Fontes R; Ortiz B; de Diego A; Sillero A; Günther Sillero MA
    FEBS Lett; 1998 Nov; 438(3):190-4. PubMed ID: 9827543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational investigation of the effect of pH on the color of firefly bioluminescence by DFT.
    Pinto da Silva L; Esteves da Silva JC
    Chemphyschem; 2011 Apr; 12(5):951-60. PubMed ID: 21341355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Luciferin Regeneration in Firefly Bioluminescence via Proton-Transfer-Facilitated Hydrolysis, Condensation and Chiral Inversion.
    Cheng YY; Liu YJ
    Chemphyschem; 2019 Jul; 20(13):1719-1727. PubMed ID: 31090243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The origin of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase): luciferin stereoselectivity as a switch for the oxygenase activity.
    Viviani VR; Scorsato V; Prado RA; Pereira JG; Niwa K; Ohmiya Y; Barbosa JA
    Photochem Photobiol Sci; 2010 Aug; 9(8):1111-9. PubMed ID: 20526507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism.
    Branchini BR; Rosenberg JC; Fontaine DM; Southworth TL; Behney CE; Uzasci L
    J Am Chem Soc; 2011 Jul; 133(29):11088-91. PubMed ID: 21707059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis-Inspired Deracemizative Production of D-Luciferin In Vitro by Combining Luciferase and Thioesterase.
    Niwa K; Kato DI
    Methods Mol Biol; 2022; 2524():53-58. PubMed ID: 35821462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis for the spectral difference in luciferase bioluminescence.
    Nakatsu T; Ichiyama S; Hiratake J; Saldanha A; Kobashi N; Sakata K; Kato H
    Nature; 2006 Mar; 440(7082):372-6. PubMed ID: 16541080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cage the firefly luciferin! - a strategy for developing bioluminescent probes.
    Li J; Chen L; Du L; Li M
    Chem Soc Rev; 2013 Jan; 42(2):662-76. PubMed ID: 23099531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excited-state proton transfer of firefly dehydroluciferin.
    Presiado I; Erez Y; Simkovitch R; Shomer S; Gepshtein R; Pinto da Silva L; Esteves da Silva JC; Huppert D
    J Phys Chem A; 2012 Nov; 116(44):10770-9. PubMed ID: 23057588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Practical application of bioluminescence enzyme immunoassay using enhancer for firefly luciferin-luciferase bioluminescence.
    Minekawa T; Ohkuma H; Abe K; Maekawa H; Arakawa H
    Luminescence; 2011; 26(3):167-71. PubMed ID: 21681909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of acyl-CoA synthetic activities and enantioselectivity toward 2-arylpropanoic acids in firefly luciferases.
    Kato D; Yokoyama K; Hiraishi Y; Takeo M; Negoro S
    Biosci Biotechnol Biochem; 2011; 75(9):1758-62. PubMed ID: 21897032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutagenesis study of the putative luciferin binding site residues of firefly luciferase.
    Branchini BR; Southworth TL; Murtiashaw MH; Boije H; Fleet SE
    Biochemistry; 2003 Sep; 42(35):10429-36. PubMed ID: 12950169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tibetan Firefly Luciferase with Low Temperature Adaptation.
    Mitani Y; Futahashi R; Liu Z; Liang X; Ohmiya Y
    Photochem Photobiol; 2017 Mar; 93(2):466-472. PubMed ID: 27716939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A selenium analogue of firefly D-luciferin with red-shifted bioluminescence emission.
    Conley NR; Dragulescu-Andrasi A; Rao J; Moerner WE
    Angew Chem Int Ed Engl; 2012 Apr; 51(14):3350-3. PubMed ID: 22344705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Nanobionic Light-Emitting Plant.
    Kwak SY; Giraldo JP; Wong MH; Koman VB; Lew TTS; Ell J; Weidman MC; Sinclair RM; Landry MP; Tisdale WA; Strano MS
    Nano Lett; 2017 Dec; 17(12):7951-7961. PubMed ID: 29148804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases.
    Tafreshi NKh; Sadeghizadeh M; Emamzadeh R; Ranjbar B; Naderi-Manesh H; Hosseinkhani S
    Biochem J; 2008 May; 412(1):27-33. PubMed ID: 18251715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.