These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 21409212)
1. Group 4 metal initiators for the controlled stereoselective polymerization of lactide monomers. Buffet JC; Okuda J Chem Commun (Camb); 2011 Apr; 47(16):4796-8. PubMed ID: 21409212 [TBL] [Abstract][Full Text] [Related]
2. Structurally well-defined group 4 metal complexes as initiators for the ring-opening polymerization of lactide monomers. Sauer A; Kapelski A; Fliedel C; Dagorne S; Kol M; Okuda J Dalton Trans; 2013 Jul; 42(25):9007-23. PubMed ID: 23552746 [TBL] [Abstract][Full Text] [Related]
3. Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligands: combining high activity, productivity, and selectivity. Amgoune A; Thomas CM; Roisnel T; Carpentier JF Chemistry; 2005 Dec; 12(1):169-79. PubMed ID: 16224808 [TBL] [Abstract][Full Text] [Related]
4. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. Ovitt TM; Coates GW J Am Chem Soc; 2002 Feb; 124(7):1316-26. PubMed ID: 11841301 [TBL] [Abstract][Full Text] [Related]
5. Group 3 metal initiators with an [OSSO]-type bis(phenolate) ligand for the stereoselective polymerization of lactide monomers. Kapelski A; Buffet JC; Spaniol TP; Okuda J Chem Asian J; 2012 Jun; 7(6):1320-30. PubMed ID: 22367758 [TBL] [Abstract][Full Text] [Related]
6. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chmura AJ; Davidson MG; Frankis CJ; Jones MD; Lunn MD Chem Commun (Camb); 2008 Mar; (11):1293-5. PubMed ID: 18389111 [TBL] [Abstract][Full Text] [Related]
7. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato)scandium complexes. Ma H; Spaniol TP; Okuda J Angew Chem Int Ed Engl; 2006 Nov; 45(46):7818-21. PubMed ID: 17066498 [No Abstract] [Full Text] [Related]
8. Novel chlorotitanium complexes containing chiral tridentate schiff base ligands for ring-opening polymerization of lactide. Lee J; Kim Y; Do Y Inorg Chem; 2007 Sep; 46(19):7701-3. PubMed ID: 17715912 [TBL] [Abstract][Full Text] [Related]
9. Dithiodiolate ligands: group 4 complexes and application in lactide polymerization. Sergeeva E; Kopilov J; Goldberg I; Kol M Inorg Chem; 2010 May; 49(9):3977-9. PubMed ID: 20356103 [TBL] [Abstract][Full Text] [Related]
10. Stereoselective ring-opening polymerization of a racemic lactide by using achiral salen- and homosalen-aluminum complexes. Nomura N; Ishii R; Yamamoto Y; Kondo T Chemistry; 2007; 13(16):4433-51. PubMed ID: 17340674 [TBL] [Abstract][Full Text] [Related]
11. Highly heteroselective ring-opening polymerization of racemic lactide initiated by divalent ytterbium complexes bearing amino bis(phenolate) ligands. Yang S; Du Z; Zhang Y; Shen Q Chem Commun (Camb); 2012 Oct; 48(78):9780-2. PubMed ID: 22930321 [TBL] [Abstract][Full Text] [Related]
12. Polymerization of lactide with zinc and magnesium beta-diiminate complexes: stereocontrol and mechanism. Chamberlain BM; Cheng M; Moore DR; Ovitt TM; Lobkovsky EB; Coates GW J Am Chem Soc; 2001 Apr; 123(14):3229-38. PubMed ID: 11457057 [TBL] [Abstract][Full Text] [Related]
17. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes. Darensbourg DJ; Karroonnirun O; Wilson SJ Inorg Chem; 2011 Jul; 50(14):6775-87. PubMed ID: 21675736 [TBL] [Abstract][Full Text] [Related]
18. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism. Nomura N; Ishii R; Akakura M; Aoi K J Am Chem Soc; 2002 May; 124(21):5938-9. PubMed ID: 12022816 [TBL] [Abstract][Full Text] [Related]
19. Template synthesis of a coordinated tetracarbene ligand with crown ether topology. Hahn FE; Langenhahn V; Lügger T; Pape T; Le Van D Angew Chem Int Ed Engl; 2005 Jun; 44(24):3759-63. PubMed ID: 15887198 [No Abstract] [Full Text] [Related]