BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21409242)

  • 1. Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells.
    Jiang X; Musyanovych A; Röcker C; Landfester K; Mailänder V; Nienhaus GU
    Nanoscale; 2011 May; 3(5):2028-35. PubMed ID: 21409242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells.
    Jiang X; Dausend J; Hafner M; Musyanovych A; Röcker C; Landfester K; Mailänder V; Nienhaus GU
    Biomacromolecules; 2010 Mar; 11(3):748-53. PubMed ID: 20166675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line.
    Lunov O; Syrovets T; Loos C; Beil J; Delacher M; Tron K; Nienhaus GU; Musyanovych A; Mailänder V; Landfester K; Simmet T
    ACS Nano; 2011 Mar; 5(3):1657-69. PubMed ID: 21344890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes.
    Liu Y; Li W; Lao F; Liu Y; Wang L; Bai R; Zhao Y; Chen C
    Biomaterials; 2011 Nov; 32(32):8291-303. PubMed ID: 21810539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of anionic sulfate-functionalized nanoparticles as an immunosensor by protein immobilization.
    Kim S; Pyo HB; Ko SH; Ah CS; Kim A; Kim WJ
    Langmuir; 2010 May; 26(10):7355-64. PubMed ID: 20205399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification and size dependence in particle translocation during early embryonic development.
    Tian F; Razansky D; Estrada GG; Semmler-Behnke M; Beyerle A; Kreyling W; Ntziachristos V; Stoeger T
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():92-6. PubMed ID: 19558239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology.
    Kendall M; Ding P; Kendall K
    Nanotoxicology; 2011 Mar; 5(1):55-65. PubMed ID: 21417688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatically tuned interactions in silica microsphere-polystyrene nanoparticle mixtures.
    Chan AT; Lewis JA
    Langmuir; 2005 Sep; 21(19):8576-9. PubMed ID: 16142928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates.
    Hsu SH; Ho TT; Tseng TC
    Biomaterials; 2012 May; 33(14):3639-50. PubMed ID: 22364729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation.
    Tautzenberger A; Lorenz S; Kreja L; Zeller A; Musyanovych A; Schrezenmeier H; Landfester K; Mailänder V; Ignatius A
    Biomaterials; 2010 Mar; 31(8):2064-71. PubMed ID: 20004969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium.
    Mistry A; Glud SZ; Kjems J; Randel J; Howard KA; Stolnik S; Illum L
    J Drug Target; 2009 Aug; 17(7):543-52. PubMed ID: 19530905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.
    Lundqvist M; Stigler J; Elia G; Lynch I; Cedervall T; Dawson KA
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14265-70. PubMed ID: 18809927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells.
    Murali K; Kenesei K; Li Y; Demeter K; Környei Z; Madarász E
    Nanoscale; 2015 Mar; 7(9):4199-210. PubMed ID: 25673096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly.
    Mangeney C; Fertani M; Bousalem S; Zhicai M; Ammar S; Herbst F; Beaunier P; Elaissari A; Chehimi MM
    Langmuir; 2007 Oct; 23(22):10940-9. PubMed ID: 17900197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIRF microscopy as a screening method for non-specific binding on surfaces.
    Charlton C; Gubala V; Gandhiraman RP; Wiechecki J; Le NC; Coyle C; Daniels S; Maccraith BD; Williams DE
    J Colloid Interface Sci; 2011 Feb; 354(1):405-9. PubMed ID: 21051043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of superhydrophobic electrospun nanocomposite fibers for energy systems.
    Asmatulu R; Ceylan M; Nuraje N
    Langmuir; 2011 Jan; 27(2):504-7. PubMed ID: 21171580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template.
    Hazarika M; Arunbabu D; Jana T
    J Colloid Interface Sci; 2010 Nov; 351(2):374-83. PubMed ID: 20800238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric nanoparticles of different sizes overcome the cell membrane barrier.
    Lerch S; Dass M; Musyanovych A; Landfester K; Mailänder V
    Eur J Pharm Biopharm; 2013 Jun; 84(2):265-74. PubMed ID: 23422734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.
    Chen M; Xie L; Li F; Zhou S; Wu L
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2733-7. PubMed ID: 20828167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.