BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21409426)

  • 1. Spinal cord direct current stimulation: finite element analysis of the electric field and current density.
    Hernández-Labrado GR; Polo JL; López-Dolado E; Collazos-Castro JE
    Med Biol Eng Comput; 2011 Apr; 49(4):417-29. PubMed ID: 21409426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of injury potential compensation by direct current stimulation in rat spinal cord.
    Wang A; Zhang G; Zhang C; Wu C; Song T; Huo X
    Biomed Mater Eng; 2014; 24(6):3693-700. PubMed ID: 25227084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling.
    Huang Q; Oya H; Flouty OE; Reddy CG; Howard MA; Gillies GT; Utz M
    Med Biol Eng Comput; 2014 Jun; 52(6):531-8. PubMed ID: 24771203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Trans-Spinal Direct Current Stimulation in the Presence of Spinal Implants.
    Kuck A; Stegeman DF; van Asseldonk EHF
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):790-797. PubMed ID: 30802867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculated spinal cord electric fields and current densities for possible neurite regrowth from quasi-DC electrical stimulation.
    Greenebaum B
    Bioelectromagnetics; 2015 Dec; 36(8):564-75. PubMed ID: 26525912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.
    Khan T; Myklebust J; Swiontek T; Sayers S; Dauzvardis M
    J Neurotrauma; 1994 Dec; 11(6):699-710. PubMed ID: 7723069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling dermatome selectivity of single-and multiple-current source spinal cord stimulation systems.
    Min X; Kent AR; Rosenberg SP; Fayram TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6246-9. PubMed ID: 25571424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A wireless spinal stimulation system for ventral activation of the rat cervical spinal cord.
    Hogan MK; Barber SM; Rao Z; Kondiles BR; Huang M; Steele WJ; Yu C; Horner PJ
    Sci Rep; 2021 Jul; 11(1):14900. PubMed ID: 34290260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of electrode configuration on the electric field distribution during transcutaneous spinal direct current stimulation of the cervical spine.
    Fernandes SR; Salvador R; Wenger C; de Carvalho MA; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3121-3124. PubMed ID: 28324978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field distribution within normal cat spinal cord.
    Khan T; Myklebust J; Swiontek T; Sayers S
    J Neurotrauma; 1994 Oct; 11(5):563-72. PubMed ID: 7861448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study.
    Fernandes SR; Salvador R; Wenger C; de Carvalho M; Miranda PC
    J Neural Eng; 2018 Jun; 15(3):036008. PubMed ID: 29386408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field distribution of epidural electrical stimulation.
    Xie X; Cui Hy; Xu S; Hu Y
    Comput Biol Med; 2013 Nov; 43(11):1673-9. PubMed ID: 24209912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of longitudinal field gradients from electrical stimulation in the normal and injured rodent spinal cord.
    Hurlbert RJ; Tator CH
    Neurosurgery; 1994 Mar; 34(3):471-82; discussion 482-3. PubMed ID: 8190223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways.
    Kuck A; Stegeman DF; van Asseldonk EHF
    J Neural Eng; 2017 Oct; 14(5):056014. PubMed ID: 28631619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling.
    Rattay F; Minassian K; Dimitrijevic MR
    Spinal Cord; 2000 Aug; 38(8):473-89. PubMed ID: 10962608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-spinal microstimulation may alleviate chronic pain after spinal cord injury.
    Shu B; Yang F; Guan Y
    Med Hypotheses; 2017 Jul; 104():73-77. PubMed ID: 28673596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling.
    Im CH; Park JH; Shim M; Chang WH; Kim YH
    Phys Med Biol; 2012 Apr; 57(8):2137-50. PubMed ID: 22452936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.